JEE Main & Advanced Mathematics Complex Numbers and Quadratic Equations Question Bank Relation between roots and coefficients

  • question_answer
    Given that \[\tan \alpha \] and \[\tan \beta \] are the roots of \[{{x}^{2}}-px+q=0,\] then the value of \[{{\sin }^{2}}(\alpha +\beta )=\][RPET 2000]

    A) \[\frac{{{p}^{2}}}{{{p}^{2}}+{{(1-q)}^{2}}}\]

    B) \[\frac{{{p}^{2}}}{{{p}^{2}}+{{q}^{2}}}\]

    C) \[\frac{{{q}^{2}}}{{{p}^{2}}+{{(1-q)}^{2}}}\]

    D) \[\frac{{{p}^{2}}}{{{(p+q)}^{2}}}\]

    Correct Answer: A

    Solution :

    Here,  \[\tan \alpha +\tan \beta =p\]                 ?..(i)            \[\tan \alpha \,\tan \beta =q\]            ?..(ii) Hence   \[\tan (\alpha +\beta )=\frac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta }\]\[=\frac{p}{1-q}\] \[\Rightarrow \,\,{{\sin }^{2}}(\alpha +\beta )=\frac{1-\cos [2(\alpha +\beta )]}{2}\] \[=\frac{1}{2}\left\{ 1-\frac{1-{{\tan }^{2}}(\alpha +\beta )}{1+{{\tan }^{2}}(\alpha +\beta )} \right\}\]\[=\frac{1}{2}\left[ 1-\frac{1-{{\left( \frac{p}{1-q} \right)}^{2}}}{1+{{\left( \frac{p}{1-q} \right)}^{2}}} \right]\] \[=\frac{1}{2}\left[ \frac{{{(1-q)}^{2}}+{{p}^{2}}-{{(1-q)}^{2}}+{{p}^{2}}}{{{(1-q)}^{2}}+{{p}^{2}}} \right]\] \[=\frac{{{p}^{2}}}{{{p}^{2}}+{{(1-q)}^{2}}}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner