JEE Main & Advanced Mathematics Conic Sections Question Bank Parabola

  • question_answer
    The length of the normal chord to the parabola \[{{y}^{2}}=4x\], which subtends right angle at the vertex is [RPET 1999]

    A)            \[6\sqrt{3}\]                             

    B)            \[3\sqrt{3}\]

    C)            2     

    D)            1

    Correct Answer: A

    Solution :

               Normal at \[P(t_{1}^{2},\,2{{t}_{1}})\] on the parabola \[{{y}^{2}}=4x\]    .....(i)            Meets it again at the point \[(y-12)=\frac{-36}{54}(x+36)\Rightarrow 2x+3y+36=0\],            where \[{{t}_{2}}=-{{t}_{1}}-\frac{2}{{{t}_{1}}}\]                                         .....(ii)            If \[PQ\] subtends a right angle at the vertex  (0, 0) then (Slope of OP)  (Slope of \[OQ)\] \[=-1\]            \[\Rightarrow \,\]\[\frac{2{{t}_{1}}}{t_{1}^{2}}.\,\frac{2{{t}_{2}}}{t_{2}^{2}}=-1\]\[\Rightarrow \]\[{{t}_{2}}=-\frac{4}{{{t}_{1}}}\]                               .....(iii)            From (ii) and (iii), \[-{{t}_{1}}-\frac{2}{{{t}_{1}}}=-\frac{4}{{{t}_{1}}}\]\[\Rightarrow \]\[-{{t}_{1}}=-\frac{2}{{{t}_{1}}}\]            \[\Rightarrow \,t_{1}^{2}\]= 2 \[\Rightarrow \,\,{{t}_{1}}=\pm \,\sqrt{2}\];  \[\therefore \,\,{{t}_{2}}=\mp \,2\,\sqrt{2}\]            \[\therefore \,\]\[P\] and \[Q\] are \[(2,\,\pm \,2\sqrt{2})\] and \[(8,\,\mp \,4\sqrt{2})\]            \[\therefore \,\]\[PQ=\sqrt{{{(8-2)}^{2}}+{{(\mp \,4\sqrt{2}\mp 2\sqrt{2})}^{2}}}=\sqrt{36+72}\]                                \[=\sqrt{108}=6\sqrt{3.}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner