9th Class Science Time and Motion Question Bank Motion

  • question_answer
    The speed of a train increases at a constant rate \[\alpha \] from zero to v, and then remains constant for an interval, and finally decreases to zero at a constant rate \[\beta \]. If L be the total distance travelled, then the total time taken is

    A) \[\frac{L}{v}+\frac{v}{2}\left( \frac{1}{\alpha }+\frac{1}{\beta } \right)\]           

    B) \[\frac{L}{v}+\frac{2}{v}\left( \frac{1}{\alpha }+\frac{1}{\beta } \right)\]

    C) \[\frac{L}{v}+2v\left( \frac{1}{\alpha }+\frac{1}{\beta } \right)\]  

    D) \[\frac{L}{v}+\frac{1}{v}\left( \frac{1}{\alpha }+\frac{1}{\beta } \right)\]

    Correct Answer: A

    Solution :

    (i) Velocity increases from 0 to v:
    We know that v = u + at Here, u = 0, v = v, \[a=\alpha \therefore t=\frac{v}{\alpha }\]
    and \[s=ut+\frac{1}{2}a{{t}^{2}};{{s}_{1}}=\frac{{{v}^{2}}}{2\alpha }\]
    (ii) Velocity decreases from \[v\] to 0: Using \[v=u+\] at
    Here, \[u=v,v=0,a=-\beta \Rightarrow t=\frac{v}{\beta }\]
    and \[s=ut+\frac{1}{2}a{{t}^{2}};{{s}_{2}}=\frac{{{v}^{2}}}{2\beta }\]
    So, distance travelled during acceleration and retardation, \[d={{s}_{1}}+{{s}_{2}}=\frac{{{v}^{2}}}{2}\left( \frac{1}{\alpha }+\frac{1}{\beta } \right)\]
    (iii) Thus, distance travelled during constant velocity \[=L-\frac{{{v}^{2}}}{2}\left( \frac{1}{\alpha }+\frac{1}{\beta } \right)\]
    So, time taken to travel this distance
    \[T=\frac{L-\frac{{{v}^{2}}}{2}\left( \frac{1}{\alpha }+\frac{1}{\beta } \right)}{v}=\frac{L}{v}-\frac{v}{2}\left( \frac{1}{\alpha }+\frac{1}{\beta } \right)\]
    Hence, total time taken to cover distance L
    \[=\left( \frac{v}{\alpha } \right)+\left[ \frac{L}{v}-\frac{v}{2}\left( \frac{1}{\alpha }+\frac{1}{\beta } \right) \right]+\left( \frac{v}{\beta } \right)\]
    \[=\frac{L}{v}+\frac{v}{2}\left( \frac{1}{\alpha }+\frac{1}{\beta } \right)\]
     


You need to login to perform this action.
You will be redirected in 3 sec spinner