12th Class Physics Photo Electric Effect, X- Rays & Matter Waves Question Bank MCQs - Dual Nature of Radiation and Matter

  • question_answer
    An electron (mass m) with an initial velocity \[v\ \ v\ i\ ({{v}_{0}}>0)\] is in an electric field \[\operatorname{E}=\ -{{E}_{0}}\overset{}{\mathop{l}}\,\] (\[{{E}_{0}}\]=constant > 0). Its de-Broglie wavelength at time t is given by

    A) \[\frac{{{\lambda }_{0}}}{\left[ 1+\frac{e{{\operatorname{E}}_{0}}t}{m\ {{v}_{0}}} \right]}\]

    B) \[{{\lambda }_{0}}\left[ 1+\frac{e{{\operatorname{E}}_{0}}t}{m{{v}_{0}}} \right]\]

    C) \[{{\lambda }_{0}}\]

    D) \[{{\lambda }_{0}}t\]

    Correct Answer: A

    Solution :

    Option [a] is correct.
    Explanation: The wave associated with moving particle is called matter wave or de-Broglie wave and it propagates in the form of wave packets with group velocity. According to de-Broglie theory,  the  wavelength  of de-Broglie wave is given by
    \[\lambda =\frac{h}{p}=\frac{h}{mv}=\frac{h}{\sqrt{2m\operatorname{E}}}\]
    As initial velocity of the electron is\[{{v}_{0}}\overset{}{\mathop{i}}\,\], the initial de-Broglie wavelength of electron,
                  \[\lambda =\frac{h}{m{{v}_{0}}}\]                            ….(i)
    Electrostatic force on electron in electric field is,
    \[{{\vec{F}}_{e}}=-e\vec{E}=-e\left[ -{{E}_{0}}\overset{}{\mathop{i}}\, \right]=eE{{z}_{0}}\overset{}{\mathop{i}}\,\]
    Acceleration of electron, \[\vec{a}=\frac{{\vec{F}}}{m}=\frac{e{{E}_{0}}\overset{}{\mathop{j}}\,}{m}\]
    \[{{\vec{v}}_{e}}={{v}_{0}}\overset{}{\mathop{i}}\,+\left( \frac{e{{E}_{0}}\overset{}{\mathop{\operatorname{i}}}\,}{m} \right)t=\left( {{v}_{0}}+\frac{e{{E}_{0}}}{m}t \right)\overset{}{\mathop{i}}\,\]
    \[\Rightarrow \]            \[\vec{v}={{v}_{0}}\left( 1+\frac{e{{E}_{0}}}{m{{v}_{0}}} \right)\overset{}{\mathop{i}}\,\]
    de - Broglie wavelength associated with electron at time t is \[\lambda =\frac{h}{mv}\]
    \[\lambda =\frac{h}{m\left[ {{v}_{0}}\left( 1+\frac{e{{E}_{0}}}{m{{v}_{0}}}t \right) \right]}=\frac{\frac{h}{m{{v}_{0}}}}{\left( 1+\frac{e{{E}_{0}}}{m{{v}_{0}}}t \right)}\]
    \[\lambda =\frac{{{\lambda }_{0}}}{\left[ 1+\frac{e{{E}_{0}}}{m{{v}_{0}}}t \right]}\operatorname{As}{{\lambda }_{0}}=\frac{h}{m{{v}_{0}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner