JEE Main & Advanced Mathematics Applications of Derivatives Question Bank Maxima and Minima

  • question_answer
    If \[f(x)=\frac{{{x}^{2}}-1}{{{x}^{2}}+1}\], for every real number x, then the minimum value of f                [IIT 1998]

    A)            Does not exist because f is unbounded

    B)            Is not attained even though f is bounded

    C)            Is equal to 1

    D)            Is equal to ?1

    Correct Answer: D

    Solution :

               \[f(x)=\frac{{{x}^{2}}-1}{{{x}^{2}}+1}=\frac{{{x}^{2}}+1-2}{{{x}^{2}}+1}=1-\frac{2}{{{x}^{2}}+1}\]                    \[\therefore f(x)<1\forall x\]and \[\ge -1\]as \[\frac{2}{{{x}^{2}}+1}\le 2\]                    \[\therefore -1\le f(x)<1\]            Hence \[f(x)\] has minimum value ?1 and also there is no maximum value.            Aliter : \[{f}'(x)=\frac{({{x}^{2}}+1)2x-({{x}^{2}}-1)2x}{{{({{x}^{2}}+1)}^{2}}}=\frac{4x}{{{({{x}^{2}}+1)}^{2}}}\]            \[{f}'(x)=0\Rightarrow x=0\]            \[{f}''\,(x)=\frac{{{({{x}^{2}}+1)}^{2}}4-4x.2({{x}^{2}}+1)2x}{{{({{x}^{2}}+1)}^{4}}}\]              \[=\frac{({{x}^{2}}+1)4-16x(x)}{{{({{x}^{2}}+1)}^{3}}}=\frac{-12{{x}^{2}}+4}{{{({{x}^{2}}+1)}^{3}}}\]            \[\therefore \,\,{f}''(0)>0\]            \[\therefore \]There is only one critical point having minima.            Hence \[f(x)\] has least value at \[x=0\].                    \[{{f}_{\min }}=f(0)=\frac{-1}{1}=-1\].


You need to login to perform this action.
You will be redirected in 3 sec spinner