JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Integration by Substitution

  • question_answer
    Let \[f(x)=\int{\frac{{{x}^{2}}dx}{(1+{{x}^{2}})\,\left( 1+\sqrt{1+{{x}^{2}}} \right)}}\]and \[f(0)=0\], then the value of \[f(1)\] be           [AMU 2005]

    A)                 \[\log (1+\sqrt{2})\]

    B)                 \[\log (1+\sqrt{2})-\frac{\pi }{4}\]

    C)                 \[\log (1+\sqrt{2})+\frac{\pi }{2}\]

    D)                 None of these

    Correct Answer: B

    Solution :

                       \[f(x)=\int{\frac{{{x}^{2}}dx}{(1+{{x}^{2}})\left( 1+\sqrt{1+{{x}^{2}}} \right)}}\]            Let \[x=\tan \theta ,dx={{\sec }^{2}}\theta \,d\theta \]\[=(1+{{x}^{2}}).d\theta \]            \[f(x)=\int{\frac{{{x}^{2}}dx}{(1+{{x}^{2}})\left( 1+\sqrt{1+{{x}^{2}}} \right)}}=\int{\frac{{{\tan }^{2}}\theta {{\sec }^{2}}\theta d\theta }{{{\sec }^{2}}\theta (1+\sec \theta )}}\]            \[=\int{\frac{{{\tan }^{2}}\theta \,\,d\theta }{1+\sec \theta }\theta }=\int{\frac{{{\sin }^{2}}\theta \,d\theta }{\cos \theta (1+\cos \theta )}}=\int{\frac{1-{{\cos }^{2}}\theta \,d\theta }{\cos \theta (1+\cos \theta )}}\]            \[=\int{\frac{(1-\cos \theta )d.\theta }{\cos \theta }}\]\[=\int{\sec \theta d\theta -\int{d\theta }}\]            \[=\log (x+\sqrt{1+{{x}^{2}}})-{{\tan }^{-1}}x+c\]            \[f(0)=\log (0+\sqrt{1+0}-{{\tan }^{-1}}(0)+c\]            \[0=\log 1-0+c\] Þ \[c=0\]                 \[f(1)=\log (1+\sqrt{1+{{1}^{2}}})-{{\tan }^{-1}}(1)=\log (1+\sqrt{2})-\frac{\pi }{4}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner