JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Integration by Parts

  • question_answer
    \[\int_{{}}^{{}}{32{{x}^{3}}{{(\log x)}^{2}}dx}\] is equal to             [MP PET 2004]

    A)                 \[{{x}^{4}}\{8{{(\log x)}^{2}}-4(\log x)+1\}+c\]   

    B)                 \[{{x}^{3}}\{{{(\log x)}^{2}}+2\log x\}+c\]

    C)                 \[{{x}^{4}}\{8{{(\log x)}^{2}}-4\log x\}+c\]           

    D)                 \[8{{x}^{4}}{{(\log x)}^{2}}+c\]

    Correct Answer: A

    Solution :

                    Let \[I=\int_{{}}^{{}}{32{{x}^{3}}{{(\log x)}^{2}}}dx=32\int_{{}}^{{}}{{{x}^{3}}{{(\log x)}^{2}}dx}\]                         \[=32\,\left[ {{(\log x)}^{2}}\int_{{}}^{{}}{{{x}^{3}}dx-\int_{{}}^{{}}{\left( \frac{d}{dx}{{(\log x)}^{2}}\int_{{}}^{{}}{{{x}^{3}}dx} \right)\,dx}} \right]\]                         \[=32\,\left[ {{(\log x)}^{2}}.\frac{{{x}^{4}}}{4}-\int_{{}}^{{}}{2\log x.\frac{1}{x}.\frac{{{x}^{4}}}{4}dx} \right]\]                         \[=32\left[ {{(\log x)}^{2}}\frac{{{x}^{4}}}{4}-\frac{1}{2}\int_{{}}^{{}}{{{x}^{3}}\log x\,dx} \right]\]                         \[=32\left[ \frac{{{(\log x)}^{2}}{{x}^{4}}}{4}-\frac{1}{2}\left( \frac{\log x.{{x}^{4}}}{4}-\int_{{}}^{{}}{\frac{1}{x}.\frac{{{x}^{4}}}{4}}\text{ }dx \right) \right]\]                        \[=32\left[ \frac{{{(\log x)}^{2}}{{x}^{4}}}{4}-\frac{1}{2}\left( \frac{{{x}^{4}}\log x}{4}-\frac{1}{4}.\frac{{{x}^{4}}}{4} \right) \right]+c\]                        \[=8\,\left[ {{(\log x)}^{2}}{{x}^{4}}-\frac{1}{2}\left( {{x}^{4}}\log x-\frac{{{x}^{4}}}{4} \right) \right]+c\]                        \[=8{{x}^{4}}\left[ {{(\log x)}^{2}}-\frac{\log x}{2}+\frac{1}{8} \right]+c\]                        \[={{x}^{4}}[8{{(\log x)}^{2}}-4\log x+1]+c\].


You need to login to perform this action.
You will be redirected in 3 sec spinner