JEE Main & Advanced Mathematics Differential Equations Question Bank Homogeneous differential equations

  • question_answer
    The solution of the equation \[\frac{dy}{dx}=\frac{x+y}{x-y}\]is                [AI CBSE 1990]

    A)                 \[c{{({{x}^{2}}+{{y}^{2}})}^{1/2}}+{{e}^{{{\tan }^{-1}}(y/x)}}=0\]

    B)                 \[c{{({{x}^{2}}+{{y}^{2}})}^{1/2}}={{e}^{{{\tan }^{-1}}(y/x)}}\]

    C)                 \[c({{x}^{2}}-{{y}^{2}})={{e}^{{{\tan }^{-1}}(y/x)}}\]    

    D)                 None of these

    Correct Answer: B

    Solution :

                       Given equation, \[\frac{dy}{dx}=\frac{x+y}{x-y}\]         It is a homogeneous equation so putting \[y=vx\]          and \[\frac{dy}{dx}=v+x\frac{dv}{dx},\] we get         \[v+x\frac{dv}{dx}=\frac{x+vx}{x-vx}=\frac{1+v}{1-v}\]         Þ \[x\frac{dv}{dx}=\frac{1+{{v}^{2}}}{1-v}\]         Þ \[\frac{1}{x}dx=\left( \frac{1}{1+{{v}^{2}}}-\frac{v}{1+{{v}^{2}}} \right)dv\]         Þ \[{{\log }_{e}}x={{\tan }^{-1}}v-\frac{1}{2}\log (1+{{v}^{2}})+{{\log }_{e}}c\]         Substituting \[v=\frac{y}{x},\]we get         \[{{\log }_{e}}x={{\tan }^{-1}}\frac{y}{x}-\frac{1}{2}\log \left[ 1+{{\left( \frac{y}{x} \right)}^{2}} \right]+{{\log }_{e}}c\]                                 Þ \[c{{({{x}^{2}}+{{y}^{2}})}^{1/2}}={{e}^{{{\tan }^{-1}}(y/x)}}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner