JEE Main & Advanced Mathematics Functions Question Bank Differentiability

  • question_answer
    If \[f(x)=\left\{ \begin{align}   & x,\,\,\,\,\,\,\,\,\,\,\,0\le x\le 1 \\  & 2x-1,\,\,\,1<x \\ \end{align} \right.\], then [Orissa JEE 2002]

    A)            f is discontinuous at\[x=1\]

    B)            f is differentiable at \[x=1\]

    C)            f is continuous but not differentiable at \[x=1\]                         

    D)            None of these

    Correct Answer: C

    Solution :

               \[f(x)=\left\{ \begin{align}   & \,\,\,x,\,\,\,\,\,\,\,\,0\le x\le 1 \\  & 2x-1,\,\,\,\,\,\,x>1 \\ \end{align} \right.\]                    \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(1-h)=\underset{h\to 0}{\mathop{\lim }}\,(1-h)=1\]                    \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(1+h)=\underset{h\to 0}{\mathop{\lim 2}}\,(1+h)-1=1\]                    \[\because \,\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=1\]                    \ Function is continuous at \[x=1\].                    \[Lf'(1)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(1-h)-f(1)}{-h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{(1-h)-1}{-h}=1\]                    \[Rf'(1)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(1+h)-f(1)}{-h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{2+2h-1-1}{h}=2\]                    \ \[Lf'(1)\ne Rf'(1)\]                    \ Function is not differentiation at \[x=1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner