JEE Main & Advanced Mathematics Functions Question Bank Critical Thinking

  • question_answer
    The function \[f(x)\,=\,|x|+|x-1|\] is [RPET 1996; Kurukshetra CEE 2002]

    A)            Continuous at \[x=1,\] but not differentiable at \[x=1\]

    B)            Both continuous and differentiable at \[x=1\]

    C)            Not continuous at \[x=1\]

    D)            Not differentiable at \[x=1\]

    Correct Answer: A

    Solution :

               We have, \[f(x)=|x|+|x-1|\]            \[=\left\{ \begin{matrix}    -2x+1, & x<0 & {}  \\    x-x+1, & 0\le x<1 & =  \\    x+x-1, & x\ge 1 & {}  \\ \end{matrix} \right.\left\{ \begin{matrix}    -2x+1, & x<0  \\    1 & 0\le x<1  \\    2x-1, & x\ge 1  \\ \end{matrix} \right.\]            Clearly,\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=1,\,\,\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=1,\,\,\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=1\]            and \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=1\]. So, \[f(x)\] is continuous at \[x=0,\,\,1.\]            Now \[f'(x)=\left\{ \begin{array}{*{35}{l}}    -2,\,\,\,\,x<0  \\    \,\,0,\,\,\,\,\,0\le x<1  \\    \,\,2,\,\,\,\,\,x\ge 1  \\ \end{array} \right.\]            Here x = 0, \[f'({{0}^{+}})=0\] while \[f'({{0}^{-}})=-2\]            and at x = 1, \[f'({{1}^{+}})=2\] while \[f'({{1}^{-}})=0\]            Thus, \[f(x)\] is not differentiable at x = 0 and 1.


You need to login to perform this action.
You will be redirected in 3 sec spinner