A) \[\frac{b}{1+a}\].
B) \[\frac{-b}{1+a}\]
C) \[\frac{a}{1+b}\]
D) None of these
View Answer play_arrowA) \[\theta \]
B) \[2\theta \]
C) \[\frac{\theta }{2}\]
D) None of these
View Answer play_arrowA) \[{{\theta }_{1}}={{\theta }_{2}}\]
B) \[{{\theta }_{1}}=2{{\theta }_{2}}\]
C) \[2{{\theta }_{1}}={{\theta }_{2}}\]
D) None of these
View Answer play_arrowA) \[a=1,b=6\]
B) \[a=1,b=-6\]
C) \[a=6,b=1\]
D) None of these
View Answer play_arrowA) Parallel
B) Coincident
C) Perpendicular
D) None of these
View Answer play_arrowA) \[\pi /6\]
B) \[\pi /4\]
C) \[\pi /3\]
D) None of these
View Answer play_arrowquestion_answer7) Angles made by the lines represented by the equation \[xy+y=0\]with \[y-\]axis are
A) \[{{0}^{o}}\]and \[{{90}^{o}}\]
B) \[{{0}^{o}}\]and \[{{30}^{o}}\]
C) \[{{30}^{o}}\]and \[{{60}^{o}}\]
D) \[{{30}^{o}}\]and \[{{90}^{o}}\]
View Answer play_arrowA) 0
B) 1
C) 2
D) \[\tan A\]
View Answer play_arrowquestion_answer9) . The angle between the lines \[xy=0\] is [MP PET 1990, 92]
A) \[{{45}^{o}}\]
B) \[{{60}^{o}}\]
C) \[{{90}^{o}}\]
D) \[{{180}^{o}}\]
View Answer play_arrowA) \[{{\tan }^{-1}}\frac{3}{4},{{\tan }^{-1}}\left( -\frac{3}{4} \right)\]
B) \[{{\tan }^{-1}}\frac{1}{3},{{\tan }^{-1}}\left( -\frac{1}{3} \right)\]
C) \[{{\tan }^{-1}}\frac{4}{3},{{\tan }^{-1}}\left( -\frac{4}{3} \right)\]
D) \[{{\tan }^{-1}}\frac{1}{2},{{\tan }^{-1}}\left( -\frac{1}{2} \right)\]
View Answer play_arrowA) 0
B) 3/2
C) 7/4
D) 5/4
View Answer play_arrowA) \[{{\tan }^{-1}}\frac{3}{2}\]
B) \[{{\tan }^{-1}}\frac{4}{5}\]
C) \[{{90}^{o}}\]
D) None of these
View Answer play_arrowquestion_answer13) The lines \[{{(lx+my)}^{2}}-3{{(mx-ly)}^{2}}=0\] and \[lx+my+n=0\] form
A) An isosceles triangle
B) A right angled triangle
C) An equilateral triangle
D) None of these
View Answer play_arrowA) \[{{30}^{o}}\]
B) \[{{45}^{o}}\]
C) \[{{60}^{o}}\]
D) \[{{90}^{o}}\]
View Answer play_arrowA) \[{{0}^{o}}\]
B) \[{{45}^{o}}\]
C) \[{{60}^{o}}\]
D) \[{{\tan }^{-1}}(-2)\]
View Answer play_arrowA) \[{{30}^{o}}\]
B) \[{{45}^{o}}\]
C) \[{{60}^{o}}\]
D) \[{{\tan }^{-1}}\frac{1}{2}\]
View Answer play_arrowA) \[\theta \]
B) \[\frac{\theta }{2}\]
C) \[\frac{\pi }{2}-\theta \]
D) \[\frac{\pi }{2}-\frac{\theta }{2}\]
View Answer play_arrowA) p/2
B) p/3
C) p/4
D) p/6
View Answer play_arrowA) \[{{\tan }^{-1}}\left( \frac{1}{3} \right)\]
B) \[{{\tan }^{-1}}3\]
C) \[{{\tan }^{-1}}\frac{\sqrt{33}}{5}\]
D) \[{{\tan }^{-1}}\frac{5}{\sqrt{33}}\]
View Answer play_arrowA) p/3
B) p/6
C) p/2
D) 0
View Answer play_arrowA) \[{{90}^{o}}\]
B) \[{{60}^{o}}\]
C) \[{{75}^{o}}\]
D) \[{{36}^{o}}\]
View Answer play_arrowA) 1/5
B) 1
C) 7/5
D) 7
View Answer play_arrowquestion_answer23) Pair of straight lines perpendicular to each other represented by [Roorkee 1990]
A) \[2{{x}^{2}}=2y(2x+y)\]
B) \[{{x}^{2}}+{{y}^{2}}+3=0\]
C) \[2{{x}^{2}}=y(2x+y)\]
D) \[{{x}^{2}}=2(x-y)\]
View Answer play_arrowA) \[p=q\]
B) \[q=0\]
C) \[p=0\]
D) p and q may have any value
View Answer play_arrowquestion_answer25) Which of the equation represents the pair of perpendicular straight lines
A) \[{{y}^{2}}+xy-{{x}^{2}}=0\]
B) \[{{y}^{2}}-xy+{{x}^{2}}=0\]
C) \[{{x}^{2}}+xy+{{y}^{2}}=0\]
D) \[{{x}^{2}}+xy-2{{y}^{2}}=0\]
View Answer play_arrowA) Perpendicular to each other
B) Parallel
C) Inclined at \[{{45}^{o}}\]to each other
D) None of these
View Answer play_arrowA) \[{{a}^{2}}+{{d}^{2}}=2ac\]
B) \[{{a}^{2}}+{{d}^{2}}=2bd\]
C) \[{{a}^{2}}+ac+bd+{{d}^{2}}=0\]
D) \[{{a}^{2}}+{{d}^{2}}=4bc\]
View Answer play_arrowA) Two parallel straight lines
B) Two perpendicular straight lines
C) Two lines passing through origin
D) None of these
View Answer play_arrowA) \[{{\sec }^{-1}}p\]
B) \[{{\cos }^{-1}}p\]
C) \[{{\tan }^{-1}}p\]
D) None of these
View Answer play_arrowA) \[\tan \theta =\frac{2({{h}^{2}}-ab)}{(a+b)}\]
B) \[\tan \theta =\frac{2\sqrt{{{h}^{2}}-ab}}{(a+b)}\]
C) \[\tan \theta =\frac{2({{h}^{2}}-ab)}{\sqrt{a+b}}\]
D) \[\tan \theta =\frac{2\sqrt{{{h}^{2}}+ab}}{(a+b)}\]
View Answer play_arrowA) \[{{k}_{1}}=-1\]
B) \[{{k}_{1}}=2{{k}_{2}}\]
C) \[2{{k}_{1}}={{k}_{2}}\]
D) None of these
View Answer play_arrowA) \[{{\cos }^{-1}}\left( \frac{4}{5} \right)\]
B) \[{{\tan }^{-1}}\left( \frac{4}{5} \right)\]
C) 0
D) p/2
View Answer play_arrowA) Coincident
B) Perpendicular
C) Parallel
D) Inclined at an angle of\[{{45}^{o}}\]
View Answer play_arrowA) \[{{45}^{o}}\]
B) \[{{60}^{o}}\]
C) \[{{\tan }^{-1}}\frac{4}{3}\]
D) \[{{\tan }^{-1}}\frac{3}{4}\]
View Answer play_arrowA) \[{{\tan }^{-1}}\left( -\frac{1}{2} \right)\]
B) \[{{\tan }^{-1}}2\]
C) \[{{\tan }^{-1}}\frac{1}{2}\]
D) \[{{60}^{o}}\]
View Answer play_arrowquestion_answer36) The angle between the lines given by \[{{x}^{2}}-{{y}^{2}}=0\] is [MP PET 1999]
A) \[{{15}^{o}}\]
B) \[{{45}^{o}}\]
C) \[{{75}^{o}}\]
D) \[9{{0}^{o}}\]
View Answer play_arrowA) \[ab=-1\]
B) \[a=-b\]
C) \[a=b\]
D) \[ab=1\]
View Answer play_arrowA) \[\frac{7}{2}\]
B) - 19
C) - 12
D) 12
View Answer play_arrowA) \[{{60}^{o}}\]
B) \[{{15}^{o}}\]
C) \[{{30}^{o}}\]
D) \[{{45}^{o}}\]
View Answer play_arrowA) \[p=12,q=1\]
B) \[p=1,q=12\]
C) \[p=-1,q=12\]
D) \[p=1,q=-12\]
View Answer play_arrowA) \[{{60}^{o}}\]
B) \[{{45}^{o}}\]
C) \[{{\tan }^{-1}}\left( \frac{7}{6} \right)\]
D) \[{{30}^{o}}\]
View Answer play_arrowA) \[2\theta \]
B) \[\theta /3\]
C) \[\theta \]
D) \[\theta /2\]
View Answer play_arrowA) 2
B) 0
C) 3
D) 1
View Answer play_arrowA) \[{{45}^{o}}\]
B) \[{{60}^{o}}\]
C) \[{{90}^{o}}\]
D) \[{{30}^{o}}\]
View Answer play_arrowYou need to login to perform this action.
You will be redirected in
3 sec