JEE Main & Advanced Mathematics Trigonometric Equations Napier's Analogy (Law of Tangents)

Napier's Analogy (Law of Tangents)

Category : JEE Main & Advanced

For any triangle ABC,          

 

 

(1) \[\tan \left( \frac{A-B}{2} \right)=\left( \frac{a-b}{a+b} \right)\cot \frac{C}{2}\]

 

 

(2) \[\tan \left( \frac{B-C}{2} \right)=\left( \frac{b-c}{b+c} \right)\cot \frac{A}{2}\]    

 

 

(3) \[\tan \left( \frac{C-A}{2} \right)=\left( \frac{c-a}{c+a} \right)\cot \frac{B}{2}\]

 

 

Mollweide's formula: For any triangle,

 

 

\[\frac{a+b}{c}=\frac{\cos \frac{1}{2}(A-B)}{\sin \frac{1}{2}C},\,\frac{a-b}{c}=\frac{\sin \frac{1}{2}(A-B)}{\cos \frac{1}{2}C}\].



LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos