VIT Engineering VIT Engineering Solved Paper-2008

  • question_answer
    If \[I=\int{\frac{{{x}^{5}}}{\sqrt{1+{{x}^{3}}}}}\,dx,\] then \[I\] is equal to

    A)  \[\frac{2}{9}{{(1+{{x}^{3}})}^{\frac{5}{2}}}+\frac{2}{3}{{(1+{{x}^{3}})}^{\frac{3}{2}}}+c\]

    B)  \[\log |\sqrt{x}+\sqrt{1+{{x}^{3}}}|+\,c\]

    C)  \[\log |\sqrt{x}-\sqrt{1+{{x}^{3}}}|+\,c\]

    D)  \[\frac{2}{9}{{(1+{{x}^{3}})}^{\frac{3}{2}}}-\frac{2}{3}{{(1+{{x}^{3}})}^{\frac{1}{2}}}+c\]

    Correct Answer: D

    Solution :

    Given,     \[I=\int{\frac{{{x}^{5}}}{\sqrt{1+{{x}^{3}}}}dx}\] Let   \[1+{{x}^{3}}=t\] \[\Rightarrow \] \[3{{x}^{2}}dx=dt\] \[\Rightarrow \] \[{{x}^{2}}dx=\frac{dt}{3}\] \[\therefore \]\[I=\int{\frac{(t-1)}{\sqrt{t}}}\cdot \frac{dt}{3}=\frac{1}{3}\int{(\sqrt{t}-{{t}^{-1/2}})dt}\] \[=\frac{1}{3}\left[ \frac{2{{t}^{3/2}}}{3}-2{{t}^{1/2}} \right]+c\] \[=\frac{2}{9}{{(1+{{x}^{3}})}^{3/2}}-\frac{2}{3}{{(1+{{x}^{3}})}^{1/2}}+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner