RAJASTHAN ­ PET Rajasthan PET Solved Paper-2008

  • question_answer
    \[\int_{0}^{\pi /2}{\frac{x\sin x.\cos x}{{{\cos }^{4x}}+{{\sin }^{4}}x}dx}\]is equal to

    A)  \[\frac{{{\pi }^{2}}}{8}\]

    B)  \[\frac{{{\pi }^{2}}}{16}\]

    C)  1

    D)  0

    Correct Answer: B

    Solution :

     Let\[I=\int_{0}^{\pi /2}{\frac{x\sin x\cos x}{{{\cos }^{4}}x+{{\sin }^{4}}x}}dx\]        ...(i) \[\Rightarrow \]\[I=\int_{0}^{\pi /2}{\frac{\left( \frac{\pi }{2}-x \right)\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}}dx\] ?(ii) On adding Eqs. (i) and (ii), we get \[2I=\int_{0}^{\pi /2}{\frac{\sin x\cos x}{{{\cos }^{4}}x+{{\sin }^{4}}x}}dx\] \[\Rightarrow \] \[I=\frac{\pi }{4}\int_{0}^{\pi /2}{\frac{\tan x{{\sec }^{2}}}{1+{{\tan }^{4}}x}}dx\] (divide numerator and denominator by\[co{{s}^{4}}x\]) Put \[{{\tan }^{2}}x=t\Rightarrow 2\tan x{{\sec }^{2}}xdx=dt,\] \[\therefore \] \[I=\frac{\pi }{4}\int_{0}^{\infty }{\frac{1}{2(1+{{t}^{2}})}dt}=\frac{\pi }{8}[{{\tan }^{-1}}t]_{0}^{\infty }\] \[=\frac{\pi }{8}\times \frac{\pi }{2}=\frac{{{\pi }^{2}}}{16}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner