Manipal Engineering Manipal Engineering Solved Paper-2013

  • question_answer
    If\[\int{\frac{dx}{{{x}^{2}}{{({{x}^{n}}+1)}^{\frac{(n-1)}{n}}}}={{[f(x)]}^{1/n}}+c}\]then\[f(x)\]is

    A) \[1+{{x}^{n}}\]                 

    B) \[1+{{x}^{-n}}\]

    C) \[{{x}^{n}}+{{x}^{-n}}\]

    D)         None of these

    Correct Answer: B

    Solution :

    We have; \[\int{\frac{dx}{{{x}^{2}}{{({{x}^{n}}+1)}^{\frac{(n-1)}{n}}}}=\int{\frac{dx}{{{x}^{2}}\cdot {{x}^{n-1}}{{\left( 1+\frac{1}{{{x}^{n}}} \right)}^{\frac{(n-1)}{n}}}}}}\]                                 \[=\int{\frac{dx}{{{x}^{n+1}}{{(1+{{x}^{-n}})}^{\frac{(n-1)}{n}}}}}\] Put,        \[1+{{x}^{-n}}=t\] \[\therefore \]  \[-n{{x}^{-n-1}}dx=dt\] \[\Rightarrow \]               \[\frac{dx}{{{x}^{n+1}}}=\frac{-dt}{n}\] \[\Rightarrow \]               \[\int{\frac{dx}{{{x}^{2}}{{({{x}^{n}}+1)}^{\frac{(n-1)}{n}}}}=-\frac{1}{n}\int{\frac{dt}{{{t}^{\frac{(n-1)}{n}}}}}}\] \[=-\frac{1}{n}\int{{{t}^{(t/n)-1}}}dt=\frac{1}{n}\cdot \frac{{{t}^{\left( \frac{1}{n}-1+1 \right)}}}{\left( \frac{1}{n}-1+1 \right)}+c\] \[=-{{t}^{1/n}}+c=-{{(1+{{x}^{-n}})}^{\frac{1}{n}}}+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner