Manipal Engineering Manipal Engineering Solved Paper-2013

  • question_answer
    The maximum value of\[(\cos {{\alpha }_{1}})\cdot (\cos {{\alpha }_{2}})...(cos{{\alpha }_{n}})\]. Under the restrictions\[0\le {{\alpha }_{1}},\,\,{{\alpha }_{2}},...{{\alpha }_{n}}\le \frac{\pi }{2}\]and\[(\cot {{\alpha }_{1}})\cdot (cot{{\alpha }_{2}})...(\cot {{\alpha }_{n}})=1\]is

    A) \[\frac{1}{{{2}^{n/2}}}\]                                               

    B) \[\frac{1}{{{2}^{n}}}\]

    C) \[\frac{1}{2n}\]                

    D)        \[1\]

    Correct Answer: A

    Solution :

    We are given that, \[(\cot {{\alpha }_{1}})\cdot (\cot {{\alpha }_{2}})...(\cot {{\alpha }_{n}})=1\] \[\Rightarrow \]\[(\cos {{\alpha }_{1}}\cdot (\cos {{\alpha }_{2}})...(\cos {{\alpha }_{n}})=(\sin {{\alpha }_{1}})\]                                 \[\cdot (\sin {{\alpha }_{2}})...(\sin {{\alpha }_{n}})\]      ? (i) Let\[y=(\cos {{\alpha }_{1}})\cdot (\cos {{\alpha }_{2}})...(\cos {{\alpha }_{n}})\] (to be max) Squaring both sides, we get \[{{y}^{2}}=({{\cos }^{2}}{{\alpha }_{1}})\cdot ({{\cos }^{2}}{{\alpha }_{2}})...({{\cos }^{2}}{{\alpha }_{n}})\] \[=\cos {{\alpha }_{1}}\cdot \sin {{\alpha }_{1}}\cdot \cos {{\alpha }_{2}}\cdot \sin {{\alpha }_{2}}...\cos {{\alpha }_{n}}\cdot \sin {{\alpha }_{n}}\]                                                                         [using (i)] \[=\frac{1}{{{2}^{n}}}[\sin 2{{\alpha }_{1}}\cdot \sin 2{{\alpha }_{2}}...\sin 2{{\alpha }_{n}}]\] As           \[0\le {{\alpha }_{1}},\,\,{{\alpha }_{2}},...{{\alpha }_{n}}\le \frac{\pi }{2}\] \[\therefore \]  \[0\le 2{{\alpha }_{1}},\,\,2{{\alpha }_{2}},...,2{{\alpha }_{n}}\le \pi \] \[\Rightarrow \]\[0\le \sin 2{{\alpha }_{1}},\,\,sin2{{\alpha }_{2}},...\sin 2{{\alpha }_{n}}\le 1\] \[\therefore \]  \[{{y}^{2}}\le \frac{1}{{{2}^{n}}}\cdot 1\]                              \[\Rightarrow y\le \frac{1}{{{2}^{n/2}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner