Manipal Engineering Manipal Engineering Solved Paper-2013

  • question_answer
    If the line\[\frac{x}{a}+\frac{y}{b}=1\]moves in such a way that \[\frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}=\frac{1}{{{c}^{2}}}\]where,\[c\]is a constant, then the locus of the foot of perpendicular from the origin on the straight line is

    A)  Straight line            

    B)  Parabola

    C)  Ellipse                

    D)         Circle

    Correct Answer: D

    Solution :

    Variable line is\[\frac{x}{a}+\frac{y}{b}=1\]                          ... (i) Any line perpendicular to (i) and passing through the origin will be                 \[\frac{x}{b}-\frac{y}{a}=0\]                                        ... (ii) Now foot of the perpendicular from the origin to line (i) is the point of intersection (i) and (ii) Let it be\[P(\alpha ,\,\,\beta )\],then                 \[\frac{\alpha }{a}+\frac{\beta }{b}=1\]                                 ... (iii) and        \[\frac{\alpha }{b}-\frac{\beta }{a}=1\]                                  ? (iv) Squaring and adding Eqs. (iii) and (iv), we get                 \[{{\alpha }^{2}}\left( \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}} \right)+{{\beta }^{2}}\left( \frac{1}{{{b}^{2}}}+\frac{1}{{{a}^{2}}} \right)=1\] Hence, the locus of\[P(\alpha ,\,\,\beta )\]is\[{{x}^{2}}+{{y}^{2}}={{c}^{2}}\] which is a circle.


You need to login to perform this action.
You will be redirected in 3 sec spinner