Manipal Engineering Manipal Engineering Solved Paper-2013

  • question_answer
    The tangents to\[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\]having inclinations\[\alpha \]and\[\beta \]intersect at\[P\]. If\[\cot \alpha +\cot \beta =0\], then the locus of\[P\]is

    A) \[x+y=0\]                           

    B) \[x-y=0\]

    C) \[xy=0\]              

    D)         None of these

    Correct Answer: C

    Solution :

    Let the coordinates of\[P\]be\[(h,\,\,k)\].Let the equation of a tangent from\[P(h,\,\,k)\]to the circle\[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\]be                 \[y=mx+a\sqrt{1+{{m}^{2}}}\] Since\[P(h,\,\,k)\]lies on \[y=mx+a\sqrt{1+{{m}^{2}}}\] therefore, \[k=mh+a\sqrt{1+{{m}^{2}}}={{(k-mh)}^{2}}={{a}^{2}}(1+{{m}^{2}})\]this is a quadratic equation in m. Let the two roots be\[{{m}_{1}}\]and\[{{m}_{2}}\], then                 \[{{m}_{1}}+{{m}_{2}}=\frac{2hK}{{{K}^{2}}-{{a}^{2}}}\] But\[\tan \alpha ={{m}_{1}},\,\,\tan \beta ={{m}_{2}}\]and it is given that \[\cot \alpha +\cot \beta =0\] \[\therefore \]  \[\frac{1}{{{m}_{1}}}+\frac{1}{{{m}_{2}}}=0\] \[\Rightarrow \]               \[{{m}_{1}}+{{m}_{2}}=0\] \[\Rightarrow \]               \[\frac{2hK}{{{K}^{2}}-{{a}^{2}}}=0\] \[\Rightarrow \]               \[hK=0\] Hence, the locus of\[(h,\,\,K)\]is\[xy=0\].


You need to login to perform this action.
You will be redirected in 3 sec spinner