Manipal Engineering Manipal Engineering Solved Paper-2013

  • question_answer
    The rate of flow of glycerine of density\[1.25\times {{10}^{3}}kg{{m}^{-3}}\]through the conical section of a pipe if the radii of its ends are\[0.1\,\,m\]and\[0.04\text{ }m\]and the pressure drop across its length\[10N{{m}^{-2}}\]is

    A) \[6.93\times {{10}^{-4}}{{m}^{3}}{{s}^{-1}}\]

    B) \[7.8\times {{10}^{-4}}{{m}^{3}}{{s}^{-1}}\]

    C) \[10.4\times {{10}^{-5}}{{m}^{3}}{{s}^{-1}}\]

    D) \[14.5\times {{10}^{-5}}{{m}^{3}}{{s}^{-1}}\]

    Correct Answer: A

    Solution :

    From Bernoullis theorem                 \[{{p}_{1}}+\frac{1}{2}\rho v_{1}^{2}={{p}_{2}}+\frac{1}{\alpha }\rho v_{2}^{2}\] \[\therefore \]  \[{{p}_{1}}-{{p}_{2}}=\frac{1}{2}\rho (v_{2}^{2}-v_{1}^{2})\] \[\therefore \]  \[10=\frac{1}{2}\times 1.25\times {{10}^{3}}(v_{2}^{2}-v_{1}^{2})\] \[\therefore \]  \[v_{2}^{2}-v_{1}^{2}=\frac{10\times 2}{1.25\times {{10}^{3}}}=16\times {{10}^{-3}}\]   ... (i) Also from equation of continuity                 \[={{A}_{1}}{{v}_{1}}={{A}_{2}}{{v}_{2}}\]                 \[\pi r_{1}^{2}{{v}_{1}}=\pi r_{2}^{2}{{v}_{2}}\] \[\therefore \]  \[\frac{{{v}_{1}}}{{{v}_{2}}}={{\left[ \frac{{{r}_{2}}}{{{r}_{1}}} \right]}^{2}}=\frac{0.04}{0.1}=0.4\]                 \[{{v}_{1}}=0.4{{v}_{2}}\]                                             ... (ii) Substituting this value in Eq. (i)                 \[v_{2}^{2}-{{(0.4{{v}_{2}})}^{2}}=16\times {{10}^{-3}}\]                 \[{{v}_{2}}=1.38\times {{10}^{-1}}=0.138m{{s}^{-1}}\] Rate of flow of glycrine\[v={{A}_{2}}{{v}_{2}}\]                 \[=\pi r_{2}^{2}{{v}_{2}}\]                 \[=6.93\times {{10}^{-4}}\times {{m}^{3}}{{s}^{-1}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner