Manipal Engineering Manipal Engineering Solved Paper-2012

  • question_answer
    The  curve  described  parametrically by \[x={{t}^{2}}+t+1,\,\,y={{t}^{2}}-t+1\]represents

    A)  a pair of straight lines

    B)  an ellipse

    C)  a parabola

    D)  a hyperbola

    Correct Answer: C

    Solution :

    We have,             \[x={{t}^{2}}+t+1\]                          ... (i) and                        \[y={{t}^{2}}-t+1\]                           ... (ii) Now              \[x+y=2(1+{{t}^{2}})\]                           ... (iii) and                \[x-y=2t\]                                    ... (iv) Now, from Eqs. (iii) and (iv), we get                 \[x+y=2\left[ 1+{{\left( \frac{x-y}{2} \right)}^{2}} \right]\] \[\Rightarrow \]               \[x+y=2\left[ \frac{4+{{x}^{2}}+y\,\,\,\,\,\,\,2xy}{4} \right]\] \[\Rightarrow \]               \[{{x}^{2}}+{{y}^{2}}-2xy-2x-2y+4=0\]    ... (v) \[\therefore \]On comparing with                 \[a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0\] We get,\[a=1,\,\,b=1,\,\,c=4,\,\,h=-1,\,\,g=-1,\,\,f=-1\] \[\because \]     \[\Delta =abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}\] Now,     \[\Delta 1\cdot 1\cdot 4+2(-1)(-1)(-1)-1\times {{(-1)}^{2}}\]                 \[=4-2-1-1-4\]                 \[=-4\]therefore,\[\Delta \ne 0\] and        \[ab-{{h}^{2}}=1\cdot 1-{{(1)}^{2}}=1-1=0\] So, it is equation of a parabola.


You need to login to perform this action.
You will be redirected in 3 sec spinner