Manipal Engineering Manipal Engineering Solved Paper-2010

  • question_answer
    \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt{1-\cos 2x}}{\sqrt{2}\cdot x}\]is

    A)  1                                            

    B)  -1

    C)  zero                     

    D)         does not exist

    Correct Answer: D

    Solution :

    \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt{1-\cos 2x}}{\sqrt{2}\cdot x}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt{1-(1-2{{\sin }^{2}}x)}}{\sqrt{2}\cdot x}\] \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt{1-\cos 2x}}{\sqrt{2}\cdot x}=\underset{x\to 0}{\mathop{\lim }}\,\frac{|\sin x|}{x}\] Let\[f(x)=\frac{|\sin x|}{x}\] Then, \[f(0+0)=\underset{h\to 0}{\mathop{\lim }}\,\frac{|\sin (0+h)|}{\sqrt{2}\cdot x}=\underset{h\to 0}{\mathop{\lim }}\,\frac{\sinh }{h}=1\] and \[f(0-0)=\underset{h\to 0}{\mathop{\lim }}\,\frac{|\sin (0-h)|}{-h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{\sinh }{-h}=-1\] \[\because \]     \[f(0+0)\ne f(0-0)\] \[\therefore \]The limit does not exist.


You need to login to perform this action.
You will be redirected in 3 sec spinner