Manipal Engineering Manipal Engineering Solved Paper-2008

  • question_answer
    The equation of curve passing through the point\[\left( 1,\frac{\pi }{4} \right)\]and having slope of tangent at any point\[(x,\,\,y)\]as\[\frac{y}{x}-{{\cos }^{2}}\left( \frac{y}{x} \right)\]is

    A) \[x={{e}^{1+\tan \left( \frac{y}{x} \right)}}\]      

    B)        \[x={{e}^{1-\tan \left( \frac{y}{x} \right)}}\]

    C) \[x={{e}^{1+\tan \left( \frac{x}{y} \right)}}\]      

    D)        \[x={{e}^{1-\tan \left( \frac{x}{y} \right)}}\]

    Correct Answer: B

    Solution :

    Given,\[\frac{dy}{dx}=\frac{y}{x}-{{\cos }^{2}}\left( \frac{y}{x} \right)\] \[\Rightarrow \]               \[\frac{x\,\,dy-y\,\,dx}{x}=-\left( {{\cos }^{2}}\frac{y}{x} \right)dx\] \[\Rightarrow \]               \[{{\sec }^{2}}\left( \frac{y}{x} \right)\left( \frac{x\,\,dy-y\,\,dx}{{{x}^{2}}} \right)=-\frac{dy}{x}\] \[\Rightarrow \]               \[{{\sec }^{2}}\frac{y}{x}\cdot d\left( \frac{y}{x} \right)=-\frac{dx}{x}\] \[\Rightarrow \]               \[\tan \frac{y}{x}=-\log x+c\] When                    \[x=1,\,\,y=\frac{\pi }{4}\]                 \[c=1\] \[\therefore \]  \[\tan \left( \frac{y}{x} \right)=1-\log x\] \[\Rightarrow \]               \[\log x=1-\tan \left( \frac{y}{x} \right)\] \[\Rightarrow \]                               \[x={{e}^{1-\tan \left( \frac{y}{x} \right)}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner