Manipal Engineering Manipal Engineering Solved Paper-2008

  • question_answer
    If\[{{z}_{r}}=\cos \frac{r\alpha }{{{n}^{2}}}+i\sin \frac{r\alpha }{2}\],     where\[r=1,\,\,2,\,\,3,....,\,\,n,\]then\[\underset{n\to \infty }{\mathop{\lim }}\,\,\,{{z}_{1}},\,\,{{z}_{2}}...{{z}_{n}}\]is equal to

    A) \[\cos \alpha +i\sin \alpha \]

    B) \[\cos \left( \frac{\alpha }{2} \right)-i\sin \left( \frac{\alpha }{2} \right)\]

    C) \[{{e}^{i\alpha /2}}\]

    D) \[\sqrt[3]{{{e}^{i\alpha }}}\]

    Correct Answer: C

    Solution :

    Given,                 \[{{z}_{r}}=\cos \frac{r\alpha }{{{n}^{2}}}+i\sin \frac{r\alpha }{{{n}^{2}}}\]                 (where\[r=1,\,\,2,\,\,3,...,\,\,n\])                 \[{{z}_{1}}=\cos \frac{\alpha }{{{n}^{2}}}+i\sin \frac{\alpha }{{{n}^{2}}}\]                 \[{{z}_{2}}=\cos \frac{2\alpha }{{{n}^{2}}}+i\sin \frac{2\alpha }{{{n}^{2}}}\]                 \[\vdots \,\,\vdots \,\,\vdots \,\,\vdots \,\,\vdots \,\,\vdots \,\,\vdots \,\,\vdots \]                 \[{{z}_{n}}=\cos \frac{n\alpha }{{{n}^{2}}}+i\sin \frac{n\alpha }{{{n}^{2}}}\] \[\therefore \]  \[\underset{n\to \infty }{\mathop{\lim }}\,({{z}_{1}}{{z}_{2}}...{{z}_{n}})=\underset{n\to \infty }{\mathop{\lim }}\,\left( \cos \frac{\alpha }{{{n}^{2}}}+i\sin \frac{\alpha }{{{n}^{2}}} \right)\] \[\times \left( \cos \frac{2\alpha }{{{n}^{2}}}+i\sin \frac{2\alpha }{{{n}^{2}}} \right)\cdots \left( \cos \frac{n\alpha }{{{n}^{2}}}+i\sin \frac{n\alpha }{{{n}^{2}}} \right)\] \[=\underset{n\to \infty }{\mathop{\lim }}\,\left[ \cos \left\{ \frac{\alpha }{{{n}^{2}}}(1+2+3+....+n \right\}+i\sin  \right.\]                                 \[\left. \left\{ \frac{\alpha }{{{n}^{2}}}(1+2+3+...+n \right\} \right]\]                 \[=\underset{n\to \infty }{\mathop{\lim }}\,\left[ \cos \frac{\alpha n(n+1)}{2{{n}^{2}}}+i\sin \frac{\alpha n(n+1)}{2{{n}^{2}}} \right]\]                 \[\cos \frac{\alpha }{2}+i\sin \frac{\alpha }{2}={{e}^{\frac{i\alpha }{2}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner