Manipal Engineering Manipal Engineering Solved Paper-2008

  • question_answer
    If\[p,\,\,p\]denote the lengths of the perpendiculars from the focus and the centre of an ellipse with semi major axis of length a respectively on a tangent to the ellipse and\[r\]denotes the focal distance of the point, then

    A) \[ap=rp+1\]                       

    B) \[rp=ap\]

    C) \[ap=rp+1\]       

    D)        \[ap=rp\]

    Correct Answer: D

    Solution :

    Tangent to the ellipse\[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\]at\[(a\cos \theta ,\,\,b\sin \theta )\]is                 \[\frac{x}{a}\cos \theta +\frac{y}{b}\sin \theta =1\]                        ... (i) \[\therefore \]\[p=\]perpendicular distance from focus\[(ae,\,\,0)\]to the line (i)                 \[=\frac{\left| \frac{ae}{a}\cos \theta +0-1 \right|}{\sqrt{\frac{{{\cos }^{2}}\theta }{{{a}^{2}}}+\frac{{{\sin }^{2}}\theta }{{{b}^{2}}}}}\]                 \[=\frac{1-e\cos \theta }{\sqrt{\frac{{{\cos }^{2}}\theta }{{{a}^{2}}}+\frac{{{\sin }^{2}}\theta }{{{b}^{2}}}}}\]                                ? (i) Also, \[p=\]perpendicular distance from centre (0, 0) to the line (i)                 \[=\frac{1}{\sqrt{\frac{{{\cos }^{2}}\theta }{{{a}^{2}}}+\frac{{{\sin }^{2}}\theta }{{{b}^{2}}}}}\]                   ? (ii) Again, \[r=SP=a(1-e\cos \theta )\] \[\therefore \]  \[ap=\frac{a-ae\cos \theta }{\sqrt{\frac{{{\cos }^{2}}\theta }{{{a}^{2}}}+\frac{{{\sin }^{2}}\theta }{{{b}^{2}}}}}=rp\]


You need to login to perform this action.
You will be redirected in 3 sec spinner