Solved papers for NEET Physics Kinetic Theory of Gases NEET PYQ-Kinetic Theory Of Gases

done NEET PYQ-Kinetic Theory Of Gases Total Questions - 19

• question_answer1) The degrees of freedom of a molecule of a tridiatomic gas are:                     [AIPMT 1999]

A)
2

B)
4

C)
6

D)
None of these

• question_answer2) A gas is formed of molecules each molecule possessing $f$ degrees of freedom, then the value of $\gamma =\frac{{{C}_{P}}}{{{C}_{V}}}$ is equal to:                                                            [AIPMT 2000]

A)
$\frac{2}{f}$

B)
$1+\frac{2}{f}$

C)
$1+\frac{f}{2}$

D)
$f+\frac{1}{2}$

• question_answer3) The gases carbon-monoxide (CO) and nitrogen at the same temperature have kinetic energies ${{E}_{1}}$ and ${{E}_{2}}$ respectively. Then:                                                                                      [AIPMT 2000]

A)
${{E}_{1}}={{E}_{2}}$

B)
${{E}_{1}}>{{E}_{2}}$

C)
${{E}_{1}}<{{E}_{2}}$

D)
${{E}_{1}}$ and ${{E}_{2}}$ cannot be compared

• question_answer4) The equation of state for 5g of oxygen at a pressure P and temperature T, when occupying a volume V, will be:                                                                                                                               [AIPMT (S) 2004]

A)
$PV=(3/32)RT$

B)
$PV=5RT$

C)
$PV=\frac{5}{32}RT$

D)
$PV=(5/16)RT$

• question_answer5) The molar specific heat at constant pressure of an ideal gas is (7/2)R. The ratio of specific heat at constant pressure to that at constant volume is: [AIPMT (S) 2006]

A)
7/5

B)
8/7

C)
5/7

D)
9/7

• question_answer6) At $10{}^\circ C$ the value of the density of a fixed mass of an ideal gas divided by its pressure is x. At $110{}^\circ C$ this ratio is                                                                                          [AIPMPT (S) 2008]

A)
x

B)
$\frac{383}{283}x$

C)
$\frac{10}{110}x$

D)
$\frac{283}{383}x$

• question_answer7) If ${{C}_{p}}$ and ${{C}_{v}}$  denote the specific heats (per unit mass) of an ideal gas of molecular weight M where R is the molar gas constant.                                                                                        [AIPMT (M) 2010]

A)
${{C}_{p}}-{{C}_{v}}=\frac{R}{{{M}^{2}}}$

B)
${{C}_{p}}-{{C}_{v}}=R$

C)
${{C}_{p}}-{{C}_{v}}=\frac{R}{M}$

D)
${{C}_{p}}-{{C}_{v}}=MR$

• question_answer8) Liquid oxygen at 50 K is heated to 300 K at constant pressure of 1 atm. The rate of heating is constant. Which one of the following graphs represents the variation of temperature with time?                            [AIPMT (S) 2012]

A) B) C) D) • question_answer9) The molar specific heats of an ideal gas at constant pressure and volume are denoted by  ${{C}_{p}}$ and ${{C}_{V}}$ respectively. If $\gamma =\frac{{{C}_{p}}}{{{C}_{V}}}$ and R is the universal gas constant, then ${{C}_{V}}$ is equal to                                                                                                                                 [NEET 2013]

A)
$\frac{1+\gamma }{1-\gamma }$

B)
$\frac{R}{(\gamma -1)}$

C)
$\frac{(\gamma -1)}{R}$

D)
$\gamma R$

• question_answer10) The amount of heat energy required to raise the temperature of 1 g of helium at NTP, from ${{T}_{1}}K$ to ${{T}_{2}}K$ is                                                                                                                                   [NEET 2013]

A)
$\frac{3}{8}{{N}_{a}}{{K}_{B}}({{T}_{2}}-{{T}_{1}})$

B)
$\frac{3}{2}{{N}_{a}}{{K}_{B}}({{T}_{2}}-{{T}_{1}})$

C)
$\frac{3}{4}{{N}_{a}}{{K}_{B}}({{T}_{2}}-{{T}_{1}})$

D)
$\frac{3}{4}{{N}_{a}}{{K}_{B}}\left( \frac{{{T}_{2}}}{{{T}_{1}}} \right)$

• question_answer11) The mean free path of molecules of a gas, (radius r) is inversely proportional to                       [NEET 2014]

A)
${{r}^{3}}$

B)
${{r}^{2}}$

C)
r

D)
4 r

• question_answer12) Two vessels separately contain two ideal gases A and B at the same temperature, the pressure of A being twice that of B. Under such conditions, the density of A is found to be 1.5 times the density of B. The ratio of molecular weight of A and B is [NEET (Re) 2015]

A)
$\frac{2}{3}$

B)
$\frac{3}{4}$

C)
2

D)
$\frac{1}{2}$

• question_answer13) The ratio of the specific heats  $\frac{{{C}_{p}}}{{{C}_{v}}}=\gamma$ in terms of degrees of freedom (n) is given by                                                                                                      [NEET  2015]

A)
$\left( 1+\frac{1}{n} \right)$

B)
$\left( 1+\frac{n}{3} \right)$

C)
$\left( 1+\frac{2}{n} \right)$

D)
$\left( 1+\frac{2}{n} \right)$

• question_answer14) The molecules of a given mass of a gas have r.m.s. velocity of $200\,\,m{{s}^{-1}}$ at $27{{\,}^{o}}C$ and $1.0\times {{10}^{5}}\,N{{m}^{-2}}$ pressure. When the temperature and pressure of the gas are respectively, $127{{\,}^{o}}C$ and $0.05\times {{10}^{5}}\,N{{m}^{-2}},$ the r.m.s. velocity of its molecules in $m{{s}^{1}}$ is :                                                                                                                                [NEET - 2016]

A)
$100\sqrt{2}$

B)
$\frac{400}{\sqrt{3}}$

C)
$\frac{100\sqrt{2}}{3}$

D)
$\frac{100}{3}$

• question_answer15)              At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere? (Given :                                    [NEET - 2018] Mass of oxygen molecule $\text{(m)=2}\text{.76 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{--26}}}\text{kg}$ Boltzmann's constant ${{\text{k}}_{\text{B}}}\text{=1}\text{.38 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{--23}}}\text{J}{{\text{K}}^{\text{--1}}}\text{)}$

A)
$\text{5}\text{.016 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ K}$

B)
$\text{8}\text{.360 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ K}$

C)
$\text{2}\text{.508 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ K}$

D)
$\text{1}\text{.254 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ K}$

• question_answer16) Increase in temperature of a gas filled in a container would lead to-                                                     [NEET 2019]

A)
Decrease in its pressure

B)
Decrease in intermolecular distance

C)
Increase in its mass

D)
Increase in its kinetic energy

• question_answer17) A cylinder contains hydrogen gas at pressure of 249 kPa and temperature $27{}^\circ C$.                 [NEET 2020] Its density is : $(R=8.3\text{ }J\text{ }mo{{l}^{1}}\text{ }{{K}^{1}})$

A)
$0.2\text{ }kg/{{m}^{3}}$

B)
$0.1\text{ }kg/{{m}^{3}}$

C)
$0.02\text{ }kg/{{m}^{3}}$

D)
$0.5\text{ }kg/{{m}^{3}}$

• question_answer18) The mean free path for a gas, with molecular diameter d and number density n can be expressed as:     [NEET 2020]

A)
$\frac{1}{\sqrt{2}n\pi {{d}^{2}}}$

B)
$\frac{1}{\sqrt{2}{{n}^{2}}\pi {{d}^{2}}}$

C)
$\frac{1}{\sqrt{2}{{n}^{2}}{{\pi }^{2}}{{d}^{2}}}$

D)
$\frac{1}{\sqrt{2}n\pi d}$

• question_answer19) The average thermal energy for a mono-atomic gas is : (${{k}_{B}}$is Boltzmann constant and T, absolute temperature)                                                                                                                   [NEET 2020]

A)
$\frac{3}{2}{{k}_{B}}T$

B)
$\frac{5}{2}{{k}_{B}}T$

C)
$\frac{7}{2}{{k}_{B}}T$

D)
$\frac{1}{2}{{k}_{B}}T$

You will be redirected in 3 sec 