JEE Main & Advanced JEE Main Paper Phase-I (Held on 08-1-2020 Morning)

  • question_answer
    Let \[f(x)={{(sin(ta{{n}^{-1}}x)+sin(co{{t}^{-1}}x))}^{2}}-1,\]\[\left| x \right|>1.\,If\,\frac{dy}{dx}=\frac{1}{2}\frac{d}{dx}(si{{n}^{-1}}(f(x)))\] and \[y(\sqrt{3})=\frac{\pi }{6},\] Then \[y(-\sqrt{3})\]is equal to [JEE MAIN Held On 08-01-2020 Morning]

    A) \[\frac{\pi }{3}\]

    B) \[-\frac{\pi }{6}\]

    C) \[\frac{2\pi }{3}\]

    D) \[\frac{5\pi }{6}\]

    Correct Answer: A , B , C , D

    Solution :

    (Bonus)
    \[f(x)={{\left\{ 2\sin \left( \frac{{{\tan }^{-1}}x+{{\cot }^{-1}}x}{2} \right)\cos \left( \frac{{{\tan }^{-1}}x-{{\cot }^{-1}}x}{2} \right) \right\}}^{2}}-1\]\[={{\left\{ 2\frac{1}{\sqrt{2}}\cos \left( \frac{\pi }{4}-{{\cos }^{-1}}x \right) \right\}}^{2}}-1\]
    \[={{\left( \sqrt{2}\left( \frac{1}{\sqrt{2}}\cos (co{{t}^{-1}}x)+\frac{1}{\sqrt{2}}\sin (co{{t}^{-1}}x) \right) \right)}^{2}}-1\]
    \[=1+2\sin (co{{t}^{-1}}x)cos(co{{t}^{-1}}x)-1\]
    \[f(x)=sin(2co{{t}^{-1}}x)=sin(2ta{{n}^{-1}}x)=sin2\theta \]
    As \[\left| x \right|<|{{\tan }^{-1}}x<-\frac{\pi }{4}or{{\tan }^{-1}}x>\frac{\pi }{4}\]
    \[\therefore 2<-\frac{\pi }{2}\,\text{or}\,2\theta >\frac{\pi }{2}\]
    Hence \[{{\sin }^{-1}}(f(x))=si{{n}^{-1}}(sin(2ta{{n}^{-1}}x))=\pi -2ta{{n}^{-1}}x\]
    or \[-\pi -2{{\tan }^{-1}}x\]
    \[\therefore \frac{dy}{dx}=\frac{1}{2}\cdot \frac{-2}{1+{{x}^{2}}}\Rightarrow y={{\cot }^{-1}}x+c\]
    or \[y(\sqrt{3})=\frac{\pi }{6}\] we get c = 0
    \[\therefore y={{\cot }^{-1}}x\,\,\text{if}\,\,x>1\]
    But if \[x<-1\]
    \[y={{\cot }^{-1}}x+d\]
    Where constant 'd' cannot be found to less data given.
     

    Solution :

    (Bonus)
    \[f(x)={{\left\{ 2\sin \left( \frac{{{\tan }^{-1}}x+{{\cot }^{-1}}x}{2} \right)\cos \left( \frac{{{\tan }^{-1}}x-{{\cot }^{-1}}x}{2} \right) \right\}}^{2}}-1\]\[={{\left\{ 2\frac{1}{\sqrt{2}}\cos \left( \frac{\pi }{4}-{{\cos }^{-1}}x \right) \right\}}^{2}}-1\]
    \[={{\left( \sqrt{2}\left( \frac{1}{\sqrt{2}}\cos (co{{t}^{-1}}x)+\frac{1}{\sqrt{2}}\sin (co{{t}^{-1}}x) \right) \right)}^{2}}-1\]
    \[=1+2\sin (co{{t}^{-1}}x)cos(co{{t}^{-1}}x)-1\]
    \[f(x)=sin(2co{{t}^{-1}}x)=sin(2ta{{n}^{-1}}x)=sin2\theta \]
    As \[\left| x \right|<|{{\tan }^{-1}}x<-\frac{\pi }{4}or{{\tan }^{-1}}x>\frac{\pi }{4}\]
    \[\therefore 2<-\frac{\pi }{2}\,\text{or}\,2\theta >\frac{\pi }{2}\]
    Hence \[{{\sin }^{-1}}(f(x))=si{{n}^{-1}}(sin(2ta{{n}^{-1}}x))=\pi -2ta{{n}^{-1}}x\]
    or \[-\pi -2{{\tan }^{-1}}x\]
    \[\therefore \frac{dy}{dx}=\frac{1}{2}\cdot \frac{-2}{1+{{x}^{2}}}\Rightarrow y={{\cot }^{-1}}x+c\]
    or \[y(\sqrt{3})=\frac{\pi }{6}\] we get c = 0
    \[\therefore y={{\cot }^{-1}}x\,\,\text{if}\,\,x>1\]
    But if \[x<-1\]
    \[y={{\cot }^{-1}}x+d\]
    Where constant 'd' cannot be found to less data given.
     

    Solution :

    (Bonus)
    \[f(x)={{\left\{ 2\sin \left( \frac{{{\tan }^{-1}}x+{{\cot }^{-1}}x}{2} \right)\cos \left( \frac{{{\tan }^{-1}}x-{{\cot }^{-1}}x}{2} \right) \right\}}^{2}}-1\]\[={{\left\{ 2\frac{1}{\sqrt{2}}\cos \left( \frac{\pi }{4}-{{\cos }^{-1}}x \right) \right\}}^{2}}-1\]
    \[={{\left( \sqrt{2}\left( \frac{1}{\sqrt{2}}\cos (co{{t}^{-1}}x)+\frac{1}{\sqrt{2}}\sin (co{{t}^{-1}}x) \right) \right)}^{2}}-1\]
    \[=1+2\sin (co{{t}^{-1}}x)cos(co{{t}^{-1}}x)-1\]
    \[f(x)=sin(2co{{t}^{-1}}x)=sin(2ta{{n}^{-1}}x)=sin2\theta \]
    As \[\left| x \right|<|{{\tan }^{-1}}x<-\frac{\pi }{4}or{{\tan }^{-1}}x>\frac{\pi }{4}\]
    \[\therefore 2<-\frac{\pi }{2}\,\text{or}\,2\theta >\frac{\pi }{2}\]
    Hence \[{{\sin }^{-1}}(f(x))=si{{n}^{-1}}(sin(2ta{{n}^{-1}}x))=\pi -2ta{{n}^{-1}}x\]
    or \[-\pi -2{{\tan }^{-1}}x\]
    \[\therefore \frac{dy}{dx}=\frac{1}{2}\cdot \frac{-2}{1+{{x}^{2}}}\Rightarrow y={{\cot }^{-1}}x+c\]
    or \[y(\sqrt{3})=\frac{\pi }{6}\] we get c = 0
    \[\therefore y={{\cot }^{-1}}x\,\,\text{if}\,\,x>1\]
    But if \[x<-1\]
    \[y={{\cot }^{-1}}x+d\]
    Where constant 'd' cannot be found to less data given.
     

    Solution :

    (Bonus)
    \[f(x)={{\left\{ 2\sin \left( \frac{{{\tan }^{-1}}x+{{\cot }^{-1}}x}{2} \right)\cos \left( \frac{{{\tan }^{-1}}x-{{\cot }^{-1}}x}{2} \right) \right\}}^{2}}-1\]\[={{\left\{ 2\frac{1}{\sqrt{2}}\cos \left( \frac{\pi }{4}-{{\cos }^{-1}}x \right) \right\}}^{2}}-1\]
    \[={{\left( \sqrt{2}\left( \frac{1}{\sqrt{2}}\cos (co{{t}^{-1}}x)+\frac{1}{\sqrt{2}}\sin (co{{t}^{-1}}x) \right) \right)}^{2}}-1\]
    \[=1+2\sin (co{{t}^{-1}}x)cos(co{{t}^{-1}}x)-1\]
    \[f(x)=sin(2co{{t}^{-1}}x)=sin(2ta{{n}^{-1}}x)=sin2\theta \]
    As \[\left| x \right|<|{{\tan }^{-1}}x<-\frac{\pi }{4}or{{\tan }^{-1}}x>\frac{\pi }{4}\]
    \[\therefore 2<-\frac{\pi }{2}\,\text{or}\,2\theta >\frac{\pi }{2}\]
    Hence \[{{\sin }^{-1}}(f(x))=si{{n}^{-1}}(sin(2ta{{n}^{-1}}x))=\pi -2ta{{n}^{-1}}x\]
    or \[-\pi -2{{\tan }^{-1}}x\]
    \[\therefore \frac{dy}{dx}=\frac{1}{2}\cdot \frac{-2}{1+{{x}^{2}}}\Rightarrow y={{\cot }^{-1}}x+c\]
    or \[y(\sqrt{3})=\frac{\pi }{6}\] we get c = 0
    \[\therefore y={{\cot }^{-1}}x\,\,\text{if}\,\,x>1\]
    But if \[x<-1\]
    \[y={{\cot }^{-1}}x+d\]
    Where constant 'd' cannot be found to less data given.
     


You need to login to perform this action.
You will be redirected in 3 sec spinner