JEE Main & Advanced JEE Main Paper Phase-I (Held on 08-1-2020 Evening)

  • question_answer
    Let S be the set of all functions \[f:\left[ 0,1 \right]\to R,\]which are continuous on [0, 1] and differentiable on (0, 1). Then for every f in S, there exists a c \[\in \](0, 1), depending on f, such that   [JEE MAIN Held on 08-01-2020 Evening]

    A) \[\left| f\left( c \right)-f\left( 1 \right)< \right|f'\left( c \right)|\]

    B) \[\frac{f(1)-f(c)}{1-c}f'\left( c \right)\]

    C) \[\left| f\left( c \right)-f\left( 1 \right)<\left( 1-c \right) \right|f'\left( c \right)|\]

    D) \[\left| f\left( c \right)+f\left( 1 \right)<\left( 1+c \right) \right|f'\left( c \right)|\]

    Correct Answer: A , B , C , D

    Solution :

    (Bonus)
                Case - 1 If f(x) is non constant
    By L.M.V.T in \[x\,\,\in (0,c)\,\,\,\,\,\,{f}'(\alpha )=\frac{f(c)-f(0)}{c}\]
    \[\Rightarrow \,\,\,\,\,\,\,\,\,c\,f'\left( \alpha  \right)=f(c)-f(0)\]             .? (i)
    By L.M.V.T in \[x\in \left( c,1 \right)\text{ }f'\left( \beta  \right)=\frac{f\left( 1 \right)-f\left( c \right)}{1-c}\]
    \[\Rightarrow \,\,\,\,\,\,f'\left( \beta  \right)\left( 1-c \right)=f(1)-f(c)\]                .? (ii)
    By (i) + (ii)
    \[\Rightarrow \,\,\,\,\,cf'\alpha +\left( 1-c \right)f'\left( \beta  \right)=f\left( 1 \right)-f\left( 0 \right)\]        ?. (iii)
    By L.M.V.T in \[\left( 0,\text{ }1 \right),f'\left( c \right)=f\left( 1 \right)-f\left( 0 \right)\]    ... (iv)
    From equation (iii) and (iv)
    \[f'\left( c \right)=cf'\left( \alpha  \right)+\left( 1-c \right)f'\left( \beta  \right)\]
    \[\Rightarrow \,\,\,\,\,\,\left| f'(c) \right|=|cf'(\alpha )+(1-c)f'(\beta )|\]                       ... (v)
    From equation (ii)
    \[\Rightarrow \,\,\,\,\,\left| f'(c) \right|=|cf'(\alpha )+f(1)-f(c)|\]
    \[\therefore \,\,\,\,\,\,\left| f'\left( c \right) \right|>\left| f\left( 1 \right)-f\left( c \right) \right|\]
    Case 2 - If f(x) is taken as constant then options (2) will satisfy which is contradictory. So it can be given as BONUS

    Solution :

    (Bonus)
                Case - 1 If f(x) is non constant
    By L.M.V.T in \[x\,\,\in (0,c)\,\,\,\,\,\,{f}'(\alpha )=\frac{f(c)-f(0)}{c}\]
    \[\Rightarrow \,\,\,\,\,\,\,\,\,c\,f'\left( \alpha  \right)=f(c)-f(0)\]             .? (i)
    By L.M.V.T in \[x\in \left( c,1 \right)\text{ }f'\left( \beta  \right)=\frac{f\left( 1 \right)-f\left( c \right)}{1-c}\]
    \[\Rightarrow \,\,\,\,\,\,f'\left( \beta  \right)\left( 1-c \right)=f(1)-f(c)\]                .? (ii)
    By (i) + (ii)
    \[\Rightarrow \,\,\,\,\,cf'\alpha +\left( 1-c \right)f'\left( \beta  \right)=f\left( 1 \right)-f\left( 0 \right)\]        ?. (iii)
    By L.M.V.T in \[\left( 0,\text{ }1 \right),f'\left( c \right)=f\left( 1 \right)-f\left( 0 \right)\]    ... (iv)
    From equation (iii) and (iv)
    \[f'\left( c \right)=cf'\left( \alpha  \right)+\left( 1-c \right)f'\left( \beta  \right)\]
    \[\Rightarrow \,\,\,\,\,\,\left| f'(c) \right|=|cf'(\alpha )+(1-c)f'(\beta )|\]                       ... (v)
    From equation (ii)
    \[\Rightarrow \,\,\,\,\,\left| f'(c) \right|=|cf'(\alpha )+f(1)-f(c)|\]
    \[\therefore \,\,\,\,\,\,\left| f'\left( c \right) \right|>\left| f\left( 1 \right)-f\left( c \right) \right|\]
    Case 2 - If f(x) is taken as constant then options (2) will satisfy which is contradictory. So it can be given as BONUS

    Solution :

    (Bonus)
                Case - 1 If f(x) is non constant
    By L.M.V.T in \[x\,\,\in (0,c)\,\,\,\,\,\,{f}'(\alpha )=\frac{f(c)-f(0)}{c}\]
    \[\Rightarrow \,\,\,\,\,\,\,\,\,c\,f'\left( \alpha  \right)=f(c)-f(0)\]             .? (i)
    By L.M.V.T in \[x\in \left( c,1 \right)\text{ }f'\left( \beta  \right)=\frac{f\left( 1 \right)-f\left( c \right)}{1-c}\]
    \[\Rightarrow \,\,\,\,\,\,f'\left( \beta  \right)\left( 1-c \right)=f(1)-f(c)\]                .? (ii)
    By (i) + (ii)
    \[\Rightarrow \,\,\,\,\,cf'\alpha +\left( 1-c \right)f'\left( \beta  \right)=f\left( 1 \right)-f\left( 0 \right)\]        ?. (iii)
    By L.M.V.T in \[\left( 0,\text{ }1 \right),f'\left( c \right)=f\left( 1 \right)-f\left( 0 \right)\]    ... (iv)
    From equation (iii) and (iv)
    \[f'\left( c \right)=cf'\left( \alpha  \right)+\left( 1-c \right)f'\left( \beta  \right)\]
    \[\Rightarrow \,\,\,\,\,\,\left| f'(c) \right|=|cf'(\alpha )+(1-c)f'(\beta )|\]                       ... (v)
    From equation (ii)
    \[\Rightarrow \,\,\,\,\,\left| f'(c) \right|=|cf'(\alpha )+f(1)-f(c)|\]
    \[\therefore \,\,\,\,\,\,\left| f'\left( c \right) \right|>\left| f\left( 1 \right)-f\left( c \right) \right|\]
    Case 2 - If f(x) is taken as constant then options (2) will satisfy which is contradictory. So it can be given as BONUS

    Solution :

    (Bonus)
                Case - 1 If f(x) is non constant
    By L.M.V.T in \[x\,\,\in (0,c)\,\,\,\,\,\,{f}'(\alpha )=\frac{f(c)-f(0)}{c}\]
    \[\Rightarrow \,\,\,\,\,\,\,\,\,c\,f'\left( \alpha  \right)=f(c)-f(0)\]             .? (i)
    By L.M.V.T in \[x\in \left( c,1 \right)\text{ }f'\left( \beta  \right)=\frac{f\left( 1 \right)-f\left( c \right)}{1-c}\]
    \[\Rightarrow \,\,\,\,\,\,f'\left( \beta  \right)\left( 1-c \right)=f(1)-f(c)\]                .? (ii)
    By (i) + (ii)
    \[\Rightarrow \,\,\,\,\,cf'\alpha +\left( 1-c \right)f'\left( \beta  \right)=f\left( 1 \right)-f\left( 0 \right)\]        ?. (iii)
    By L.M.V.T in \[\left( 0,\text{ }1 \right),f'\left( c \right)=f\left( 1 \right)-f\left( 0 \right)\]    ... (iv)
    From equation (iii) and (iv)
    \[f'\left( c \right)=cf'\left( \alpha  \right)+\left( 1-c \right)f'\left( \beta  \right)\]
    \[\Rightarrow \,\,\,\,\,\,\left| f'(c) \right|=|cf'(\alpha )+(1-c)f'(\beta )|\]                       ... (v)
    From equation (ii)
    \[\Rightarrow \,\,\,\,\,\left| f'(c) \right|=|cf'(\alpha )+f(1)-f(c)|\]
    \[\therefore \,\,\,\,\,\,\left| f'\left( c \right) \right|>\left| f\left( 1 \right)-f\left( c \right) \right|\]
    Case 2 - If f(x) is taken as constant then options (2) will satisfy which is contradictory. So it can be given as BONUS


You need to login to perform this action.
You will be redirected in 3 sec spinner