JEE Main & Advanced JEE Main Paper (Held On 25 April 2013)

  • question_answer
                    If the integral \[\int{\frac{\cos 8x+1}{\cot 2x-\tan 2x}dx=A\cos }\]\[8x+k,\]where K is an arbitrary constant, then A is equal to :     JEE Main Online Paper ( Held On 25  April 2013 )

    A)                 \[-\frac{1}{16}\]

    B)                                        \[\frac{1}{16}\]

    C)                                        \[\frac{1}{8}\]                                   

    D)                                        \[-\frac{1}{8}\]

    Correct Answer: A

    Solution :

                    Let\[I=\int_{{}}^{{}}{\frac{\cos 8x+1}{\cot 2x-\tan 2x}dx}\] Now,\[{{D}^{r}}=\cot 2x-\tan 2x=\frac{\cos 2x}{\sin 2x}-\frac{\sin 2x}{\cos 2x}\] \[=\frac{{{\cos }^{2}}2x-{{\sin }^{2}}2x}{\sin 2x\cos 2x}-\frac{2\cos 4x}{\sin 4x}\] \[\therefore \]\[I=\int_{{}}^{{}}{\frac{2{{\cos }^{2}}4x}{\frac{2\cos 4x}{\sin 4x}}dx=\int_{{}}^{{}}{\frac{2{{\cos }^{2}}4x.\sin 4x}{2\cos 4x}dx}}\] \[=\frac{1}{2}\int_{{}}^{{}}{\sin 8xdx}=-\frac{1}{2}\frac{\cos 8x}{8}+k\] \[=-\frac{1}{16}.\cos 8x+k\] \[\Rightarrow \]\[A=-\frac{1}{16}\]                


You need to login to perform this action.
You will be redirected in 3 sec spinner