JEE Main & Advanced JEE Main Paper (Held On 19 April 2014)

  • question_answer
    If \[\Delta r=\left| \begin{matrix}   r & 2r-1 & 3r-2  \\    \frac{n}{2} & n-1 & a  \\    \frac{1}{2}n(n-1) & {{(n-1)}^{2}} & \frac{1}{2}(n-1)(3n-4)  \\ \end{matrix} \right|\]then the value of\[\sum\limits_{r=1}^{n-1}{{{\Delta }_{r}}}\]     JEE Main Online Paper (Held On 19 April 2016)

    A) depends only on a

    B) depends only on n

    C) depends both on a and n

    D) is independent of both a and n

    Correct Answer: D

    Solution :

    \[\sum\limits_{r=1}^{n-1}{r=1+2+3+...+(n-1)=\frac{n(n-1)}{2}}\] \[\sum\limits_{r=1}^{n-1}{(2r=1)=1+3+5+...+[2(n-1)-2]}\] \[={{(n-1)}^{2}}\] \[\sum\limits_{r=1}^{n-1}{(3r-1)=1+4+7+...+(3n-3-2)}\] \[=\frac{(n-1)(3n-4)}{2}\] \[\therefore \]\[\sum\limits_{r=1}^{n-1}{{{\Delta }_{r}}}=\left| \begin{matrix}    \Sigma r & \Sigma (2r-1) & \Sigma (3r-2)  \\    \frac{n}{2} & n-1 & a  \\    \frac{n(n-1)}{2} & {{(n-1)}^{2}} & \frac{(n-1)(3n-4)}{2}  \\ \end{matrix} \right|\] \[\sum\limits_{r=1}^{n-1}{{{\Delta }_{r}}}\]consists of (n ? 1) determinants in L.H.S. and in R.H.S every constituent of first row consists of (n ? 1) elements and hence it can be splitted into sum of (n ? 1) determinants. \[\therefore \]\[\sum\limits_{r=1}^{n-1}{{{\Delta }_{r}}}=\left| \begin{matrix}    \frac{n(n-1)}{2} & {{(n-1)}^{2}} & \frac{(n-1)(3n-4)}{2}  \\    \frac{n}{2} & n-1 & a  \\    \frac{n(n-1)}{2} & {{(n-1)}^{2}} & \frac{(n-1)(3n-4)}{2}  \\ \end{matrix} \right|\] \[=0\] (\[\because \]\[{{R}_{1}}\]and \[{{R}_{3}}\] are identical) Hence, value of\[\sum\limits_{r=1}^{n-1}{{{\Delta }_{r}}}\]is independent of both 'a' and 'n'.


You need to login to perform this action.
You will be redirected in 3 sec spinner