JEE Main & Advanced JEE Main Paper (Held On 15 April 2018) Slot-I

  • question_answer
    An angle between the plane, \[x+y+z=5\] and the line of intersection of the planes, \[3x+4y+z-1=0\] and \[5x+8y+2z+14=0\], is                                                                                 [JEE Online 15-04-2018]

    A) \[{{\cos }^{-1}}\left( \frac{3}{\sqrt{17}} \right)\]   

    B) \[{{\cos }^{-1}}\left( \sqrt{\frac{3}{17}} \right)\]

    C)        \[{{\sin }^{-1}}\left( \frac{3}{\sqrt{17}} \right)\]

    D)        \[{{\sin }^{-1}}\left( \sqrt{\frac{3}{17}} \right)\]   

    Correct Answer: B

    Solution :

    \[3x+4y+z=1\times 2\] \[5x+8y+2z=-14\] \[6x+8y+2z=2\] \[x=16;4y+z=1-48\] \[4y+z=-47\] \[x,4y+z=-47\] \[(15,-12,1)\]and \[(15,-11,-3)\] \[x=15;\frac{y+12}{1}=\frac{z-1}{-4}\overrightarrow{r}=(15,12,1)+\lambda (0-1,-4)\] \[x-15=0;\frac{y+12}{1}=z\] \[\cos \theta =\frac{\overrightarrow{b}\cdot \overrightarrow{x}}{|b||x|}\] \[=\frac{(0\widehat{i}+1\widehat{j}-4k)(\widehat{j}+\widehat{j}k}{\sqrt{17\times 3}}\overrightarrow{x}=(1,1,1)\] \[=\frac{1-4}{\sqrt{51}}=\frac{3}{\sqrt{17\times 3}}=\sqrt{\frac{3}{17}}\] \[\theta ={{\cos }^{-1}}\left( \sqrt{\frac{3}{17}} \right)\]. Normal to \[3x+4y+z=1\] is \[3\widehat{i}4\widehat{j}+\widehat{k}\] Normal to \[5x+8y+2z=-14\] is \[5\widehat{i}+8\widehat{j}+2\widehat{k}\] The line at which these planes intersect is perpendicular to both normal, hence its direction ratios are directly proportional to the cross product vector of the normal So, the direction ratios of the line can be chosen as \[-\widehat{j}+4\widehat{k}\] So, the angle between the plane \[x+y+z+5=0\] and the line obtained is given by \[{{\sin }^{-1}}\frac{-1+4}{\sqrt{17}\sqrt{3}}={{\sin }^{-1}}\sqrt{\frac{3}{17}}\] So, option D is the correct answer.


You need to login to perform this action.
You will be redirected in 3 sec spinner