JEE Main & Advanced JEE Main Paper (Held On 12 May 2012)

  • question_answer
    If \[\frac{d}{dx}G(x)=\frac{{{e}^{\tan x}}}{x},x\in (0,\pi /2),\]then \[\int\limits_{1/4}^{1/2}{\frac{2}{x}.{{e}^{\tan (\pi {{x}^{2}})}}}dx\] is equal to     JEE Main Online Paper (Held On 12 May 2012)

    A) \[G(\pi /4)-G(\pi /16)\]

    B)                        \[2[G(\pi /4)-G(\pi /16)]\]

    C)                        \[\pi [G(1/2)-G(1/4)]\]

    D)                        \[G(1/\sqrt{2})-G(1/2)\]

    Correct Answer: A

    Solution :

                    Let\[\frac{d}{dx}G\left( x \right)=\frac{{{e}^{\tan x}}}{x},x\in \left( 0,\frac{\pi }{2} \right)\] Now,\[I=\int\limits_{{}^{1}/{}_{4}}^{{}^{1}/{}_{2}}{\frac{2}{x}{{e}^{\tan \pi {{x}^{2}}}}}dx\] \[=\int\limits_{{}^{1}/{}_{4}}^{{}^{1}/{}_{2}}{\frac{2\pi }{\pi {{x}^{2}}}{{e}^{\tan \pi {{x}^{2}}}}}dx\] Let\[\pi {{x}^{2}}=t\Rightarrow 2\pi x\,dx=dt\] when\[x=\frac{1}{2},t=\frac{\pi }{4}\]and\[x=\frac{1}{4},t=\frac{\pi }{16}\] \[\therefore \]\[\left. I=\int\limits_{{}^{\pi }/{}_{16}}^{{}^{\pi }/{}_{4}}{\frac{{{e}^{\tan t}}}{t}dt}=g(t) \right|\begin{matrix}    \frac{\pi }{4}  \\    \frac{\pi }{16}  \\ \end{matrix}\] \[=G\left( \frac{\pi }{4} \right)-G\left( \frac{\pi }{16} \right)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner