JEE Main & Advanced JEE Main Paper (Held On 11-Jan-2019 Morning)

  • question_answer
    Let \[f(x)=\left\{ \begin{matrix}    -1, & -2\le x<0  \\    {{x}^{2}}-1, & 0\le x\le 2  \\ \end{matrix} \right.\]  and \[g(x)=|f(x)|+f(|x|).\] Then, in the interval (\[-2,\text{ }2\]),g is

    A) not differentiable at one point

    B)               differentiable at all points

    C)               not continuous

    D)               not differentiable at two points

    Correct Answer: A

    Solution :

    Given, \[f(x)=\left\{ \begin{matrix}    -1, & -2\le x<0  \\    {{x}^{2}}-1, & 0\le x\le 2  \\ \end{matrix} \right.\] \[\therefore \]\[|f(x)|=\left\{ \begin{matrix}    1, & -2\le x<0  \\    1-{{x}^{2}}, & 0\le x<1  \\    {{x}^{2}}-1, & 1\le x\le 2  \\ \end{matrix} \right.\] and\[f(|x|)={{x}^{2}}-1,x\in [-2,2]\] \[\therefore \]\[g(x)=\left\{ \begin{matrix}    {{x}^{2}}, & -2\le x<0  \\    0, & 0\le x<1  \\    2{{x}^{2}}-1, & 1\le x\le 2  \\ \end{matrix} \right.\] \[g'(x)=\left\{ \begin{matrix}    2x & -2<x<0  \\    0, & 0<x<1  \\    4x & 1<x<2  \\ \end{matrix} \right.\] \[g'({{0}^{-}})=0=g'({{0}^{+}})\]and\[g'({{1}^{-}})=0,g'({{1}^{+}})=4\] So, g(x) is not differentiable at x = 1.


You need to login to perform this action.
You will be redirected in 3 sec spinner