JEE Main & Advanced JEE Main Paper (Held On 10 April 2016)

  • question_answer
    Let \[z=1+ai\]be a complex number, a > 0 such that \[{{z}^{3}}\] is a real number. Then the sum \[1+z+{{z}^{2}}+.....+{{z}^{11}}\]is equal to   JEE Main Online Paper (Held On 10 April 2016)

    A) \[-1250\sqrt{3}\,i\]                            

    B) \[1250\sqrt{3}\,i\]

    C) \[-1350\sqrt{3}\,i\]            

    D) \[1365\sqrt{3}\,i\]

    Correct Answer: C

    Solution :

                 \[z=1+ai,\]                             \[a>0\] \[{{z}^{3}}=1-3{{a}^{2}}+(3a-{{a}^{3}})i\] is a real number              \[\Rightarrow \,\,3a-{{a}^{3}}=0\]              \[\Rightarrow \,\,{{a}^{2}}=3\]              \[\Rightarrow \,\,a=\sqrt{3},\]              \[\Rightarrow \,\,a=\sqrt{3},\]                      \[a\,>\,0\]              \[\Rightarrow \,\,z=1+\sqrt{3}i\]              \[=2\left( \cos \frac{\pi }{3}+i\,\sin \frac{\pi }{3} \right)\] Now \[1+z+{{z}^{2}}+\,......\,+{{z}^{11}}=\frac{1\left( 1-{{z}^{12}} \right)}{1-z}=\frac{1-{{12}^{12}}\left( \cos 4\pi +i\,\sin 4\pi  \right)}{1-\left( 1+i\sqrt{3} \right)}\]\[=\frac{1-{{2}^{12}}}{-i\sqrt{3}}=\frac{4095}{i\sqrt{3}}=-1365\,\,\sqrt{3}\,i\]


You need to login to perform this action.
You will be redirected in 3 sec spinner