# Solved papers for JEE Main & Advanced AIEEE Solved Paper-2005

### done AIEEE Solved Paper-2005

• question_answer1) If the circles${{x}^{2}}+{{y}^{2}}+2ax+cy+a=0$and ${{x}^{2}}+{{y}^{2}}-3\text{ }ax+dy-1=0$intersect in two distinct points P and 0, then the line $5x+by-a=0$passes through P and Q for     AIEEE  Solved  Paper-2005

A) exactly two values of a

B) infinitely many values of a

C) no value of a

D) exactly one value of a

• question_answer2) A circle touches the X-axis and also touches the circle with centre at (0, 3) and radius 2. The locus of the centre of the circle is       AIEEE  Solved  Paper-2005

A) a parabola

B)        a hyperbola

C)        a circle

D)        an ellipse

• question_answer3) If a circle passes through the point (a, b) and  cuts  the  circle${{x}^{2}}+{{y}^{2}}={{p}^{2}}$orthogonally, then the equation of the locus of its centre is     AIEEE  Solved  Paper-2005

A) $2ax+2by-({{a}^{2}}+{{b}^{2}}+{{p}^{2}})=0$

B) ${{x}^{2}}+{{y}^{2}}-2ax-3by+({{a}^{2}}-{{b}^{2}}-{{p}^{2}})=0$

C) $2ax+2by-({{a}^{2}}-{{b}^{2}}+{{p}^{2}})=0$

D) ${{x}^{2}}+{{y}^{2}}-3ax-4by+({{a}^{2}}+{{b}^{2}}-{{p}^{2}})=0$

• question_answer4) If the pair of linesa${{x}^{2}}+2(a+b)xy+b{{y}^{2}}=0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sector is thrice the area of another sector, then     AIEEE  Solved  Paper-2005

A) $3{{a}^{2}}+2ab+3{{b}^{2}}=0$

B) $3{{a}^{2}}+10ab+3{{b}^{2}}=0$

C) $3{{a}^{2}}-2ab+3{{b}^{2}}=0$

D) $3{{a}^{2}}-10ab+3{{b}^{2}}=0$

You will be redirected in 3 sec 