Solved papers for NEET Chemistry Thermodynamics / रासायनिक उष्मागतिकी NEET PYQ-Thermodynamics

done NEET PYQ-Thermodynamics Total Questions - 81

  • question_answer1) Identify the correct statement regarding entropy:                                                                   [AIPMT 1998]

    A)
     At absolute zero temperature, entropy of a perfectly crystalline substance is taken to be zero

    B)
          At absolute zero of temperature the entropy of a perfectly crystalline substance is +ve

    C)
          At absolute zero of temperature the entropy of all crystalline substance is to be zero

    D)
          At \[0{}^\circ C,\] the entropy of a perfectly crystalline substance is taken to be zero

    View Answer play_arrow
  • question_answer2) One mole of an ideal gas at 300 K is expanded isothermally from an initial volume of 1 L to 10 L.  The \[\Delta E\] for this process is                                                                               [AIPMT 1998]

    A)
     163.7 cal         

    B)
          zero                 

    C)
     1381.1 cal       

    D)
          9 L atm

    View Answer play_arrow
  • question_answer3) In an endothermic reaction, the value of \[\Delta H\] is:                                                        [AIPMT 1999]

    A)
     zero       

    B)
     positive

    C)
     negative         

    D)
          constant

    View Answer play_arrow
  • question_answer4) 
    In the reaction
    \[S(s)+\frac{3}{2}{{O}_{2}}(g)\xrightarrow{{}}S{{O}_{3}}(g)+2x\,kcal\]
    and \[S{{O}_{2}}(g)+\frac{1}{2}{{O}_{2}}(g)\xrightarrow{{}}S{{O}_{3}}(s)+y\,kcal\] the heat of formation of \[S{{O}_{2}}\] is:                                                                                                                          [AIPMT 1999]

    A)
           \[(x+y)\]

    B)
          \[(x-y)\]

    C)
     \[(2x+y)\]

    D)
                      \[(2x-y)\]

    View Answer play_arrow
  • question_answer5) If \[\Delta E\] is the heat of reaction for \[{{C}_{2}}{{H}_{5}}OH(l)+3{{O}_{2}}(g)\xrightarrow{{}}2C{{O}_{2}}(g)+3{{H}_{2}}O(l)\] at constant volume, the \[\Delta H\] (heat of reaction at constant pressure) at constant temperature is:             [AIPMT 2000]

    A)
     \[\Delta H=\Delta E+RT\]          

    B)
     \[\Delta H=\Delta E-RT\]

    C)
     \[\Delta H=\Delta E-2RT\]

    D)
          \[\Delta H=\Delta E+2RT\]

    View Answer play_arrow
  • question_answer6) The entropy change in the fusion of one mole of a solid melting at \[{{27}^{o}}C\] (Latent heat of fusion,\[2930\text{ }J\text{ }mo{{l}^{-1}}\]) is:                                                                                          [AIPMT 2000]

    A)
     \[9.77\text{ }J\text{ }{{K}^{-1}}mo{{l}^{-1}}\]         

    B)
     \[10.73\text{ }J\text{ }{{K}^{-1}}mo{{l}^{-1}}\]

    C)
     \[2930\text{ }J\text{ }{{K}^{-1}}mo{{l}^{-1}}\]

    D)
                      \[108.5\text{ }J\text{ }{{K}^{-1}}mo{{l}^{-1}}\]

    View Answer play_arrow
  • question_answer7) 
    The factor of \[\Delta G\] values is important in metallurgy. The \[\Delta G\] values for the following reactions at \[{{800}^{o}}C\] are given as:
    \[{{S}_{2}}(s)+2{{O}_{2}}(g)\to 2S{{O}_{2}}(g)\,;\]           \[\Delta G=-544\,kJ\]
    \[2Zn(s)+{{S}_{2}}O\to \,2ZnS(s)\,;\] \[\Delta G=-293kJ\]
    \[2Zn(s)+{{O}_{2}}(g)\to 2ZnO(s);\]   \[\Delta G=-480\,kJ\]
    Then \[\Delta G\] for the reaction
    \[2ZnS(s)+3{{O}_{2}}(g)\xrightarrow{{}}2ZnO(s)+2S{{O}_{2}}(g)\]
    will be:                                                                                                                                     [AIPMT 2000]  

    A)
           \[\text{ }357\text{ }kJ\]

    B)
          \[-731\text{ }kJ\]

    C)
     \[-773\text{ }kJ~\]                   

    D)
     \[-229\text{ }kJ\]

    View Answer play_arrow
  • question_answer8) Change in enthalpy for reaction \[2{{H}_{2}}{{O}_{2}}(l)\xrightarrow{{}}2{{H}_{2}}O(l)+{{O}_{2}}(g)\] If heat of formation of \[{{H}_{2}}{{O}_{2}}(l)\] and \[{{H}_{2}}O(l)\] are \[-188\] and \[-286\text{ }kJ/mol\] respectively:       [AIPMT 2001]

    A)
     \[-196\text{ }k\text{ }J/mol\]

    B)
          \[+\text{ }196\text{ }k\text{ }J/mol\]

    C)
     \[+948\text{ }k\text{ }J/mol\]

    D)
          \[-948\text{ }k\text{ }J/mol\]

    View Answer play_arrow
  • question_answer9) When 1 mole gas is heated at constant volume, temperature is raised from 298 to 308K. Heat supplied to the gas is 500 J. Then which statement is correct?                                                                                               [AIPMT 2001]

    A)
     \[q=w=500\,J,\,\Delta U=0\]

    B)
     \[q=\Delta U=500\,J,\,w=0\]

    C)
     \[q=w=500\,J,\,\Delta U=0\]

    D)
     \[\Delta U=0,\,\,q=w=-500\,J\]

    View Answer play_arrow
  • question_answer10) Enthalpy of \[C{{H}_{4}}+\frac{1}{2}{{O}_{2}}\to C{{H}_{3}}OH\] negative. If enthalpy of combustion of \[C{{H}_{4}}\] and \[C{{H}_{3}}OH\] are \[x\] and \[y\] respectively. Then which relation is correct?      [AIPMT 2001]

    A)
     \[x>y\]

    B)
                      \[x<y\]

    C)
     \[x=y\]

    D)
                      \[xy\]

    View Answer play_arrow
  • question_answer11) 
    \[Pb{{O}_{2}}\xrightarrow{{}}PbO\,\,\Delta {{G}_{298}}<0\]
                \[Sn{{O}_{2}}\xrightarrow{{}}SnO\,\,\Delta {{G}_{298}}>0\]
                Most probable oxidation state of Pb and Sn will be:                                                [AIPMT 2001]

    A)
                                                                  \[P{{b}^{4+}},\,S{{n}^{4+}}\]                   

    B)
     \[P{{b}^{4+}},\,S{{n}^{2+}}\]

    C)
     \[P{{b}^{2+}},\,S{{n}^{2+}}\]

    D)
                      \[P{{b}^{2+}},\,S{{n}^{4+}}\]

    View Answer play_arrow
  • question_answer12) Unit of entropy is:                                                                                                                      [AIPMT 2002]

    A)
     \[J{{K}^{-1}}\,mo{{l}^{-1}}\]                      

    B)
     \[J\,mo{{l}^{-1}}\]

    C)
     \[{{J}^{-1}}{{K}^{-1}}\,mo{{l}^{-1}}\]                  

    D)
     \[JK\,mo{{l}^{-1}}\]

    View Answer play_arrow
  • question_answer13) In a closed insulated container a liquid is stirred with a paddle to increase the temperature, which of the following is true?                                                                                                                                      [AIPMT 2002]

    A)
     \[\Delta E=\Delta W\ne 0,\,q=0\]

    B)
     \[\Delta E=W=0,\,q\ne 0\]

    C)
     \[\Delta E=0,\,W=q\ne 0\]         

    D)
     \[W=0,\,\Delta W=q\ne 0\]

    View Answer play_arrow
  • question_answer14) 2 mole of ideal gas at \[27{}^\circ C\] temperature is expanded reversibly from 2 L to 20 L. Find entropy change (R = 2 cal/mol K):                                                                                                                    [AIPMT 2002]

    A)
     92.1   

    B)
          0      

    C)
     4      

    D)
          9.2

    View Answer play_arrow
  • question_answer15) Heat of combustion \[\Delta {{H}^{o}}\] for \[C(s),\,\,{{H}_{2}}(g)\] and\[C{{H}_{4}}(g)\] are -94, -68 and -213 kcal/mol. Then \[\Delta {{H}^{o}}\] for \[C(s)+2{{H}_{2}}(g)\xrightarrow[{}]{{}}C{{H}_{4}}(g)\] is:  [AIPMT 2002]

    A)
           - 17 kcal

    B)
          - 111 kcal

    C)
          - 170 kcal   

    D)
     - 85 kcal

    View Answer play_arrow
  • question_answer16) The densities of graphite and diamond at 298 K are 2.25 and \[3.31\text{ }g\text{ }c{{m}^{-3}}\], respectively. If the standard free energy difference \[(\Delta {{G}^{o}})\] is equal to \[1895\text{ }J\text{ }mo{{l}^{-1}},\] the pressure at which graphite will be transformed into diamond at 298 K is:                                                         [AIPMT 2003]

    A)
           \[9.92\times {{10}^{6}}\,Pa\]  

    B)
     \[9.92\times {{10}^{5}}\,P\]

    C)
     \[9.92\times {{10}^{8}}\,Pa\]

    D)
          \[9.92\times {{10}^{7}}Pa\]

    View Answer play_arrow
  • question_answer17) On the basis of the information available from the reaction \[\frac{4}{3}Al+{{O}_{2}}\to \frac{2}{3}\,A{{l}_{2}}{{O}_{3}},\,\Delta G=-827\,kJ\,mo{{l}^{-1}}\] of \[{{O}_{2}},\] the minimum emf required to carry out an electrolysis of \[A{{I}_{2}}{{O}_{3}}\] is \[(F=96500\text{ }C\text{ }mo{{l}^{-1}})\]                                                                                             [AIPMT 2003]

    A)
           6.42 V

    B)
          8.56 V 

    C)
     2.14 V 

    D)
                      4.28 V

    View Answer play_arrow
  • question_answer18) The molar heat capacity of water at constant pressure, C, is \[75\text{ }J{{K}^{-1}}mo{{l}^{-1}}\]. When 1.0 kJ of heat is supplied to 100 g of water which is free to expand, the increase in temperature of water is:                    [AIPMT 2003]

    A)
     4.8 K              

    B)
     6.6 K

    C)
     1.2 K              

    D)
     2.4 K

    View Answer play_arrow
  • question_answer19) What is the entropy change (in\[J{{K}^{-1}}mo{{l}^{-1}}\]) when one mole of ice is converted into water at \[0{}^\circ C\]? (The enthalpy change for the conversion of ice to liquid water is \[6.0\text{ }kJ\text{ }mo{{l}^{-1}}\] at \[0{}^\circ C\])                                                                                                                                    [AIPMT 2003]

    A)
     2.198  

    B)
          21.98

    C)
     20.13 

    D)
          2.013

    View Answer play_arrow
  • question_answer20) For which one of the following equations \[\Delta H_{nreact}^{o}\] equal to \[\Delta H_{f}^{o}\] for the product?                                                                                                                                       [AIPMT 2003]

    A)
     \[Xe(g)+2{{F}_{2}}(g)\xrightarrow[{}]{{}}Xe{{F}_{4}}(g)\]       

    B)
     \[2CO(g)+{{O}_{2}}(g)\xrightarrow[{}]{{}}2C{{O}_{2}}(g)\]

    C)
          \[{{N}_{2}}(g)+{{O}_{3}}(g)\xrightarrow[{}]{{}}2C{{O}_{2}}(g)\]

    D)
                      \[C{{H}_{4}}(g)+2C{{l}_{2}}(g)\xrightarrow[{}]{{}}C{{H}_{2}}C{{l}_{2}}(\ell )+2HCl\,(g)\]

    View Answer play_arrow
  • question_answer21) 
    Formation of a solution from two components can be considered as:                         [AIPMT 2003]
    (1) pure solvent\[\to \]separated solvent molecules, \[\Delta {{H}_{1}}\]
    (2) pure solute\[\to \]separated solute molecules, \[\Delta {{H}_{2}}\]
    (3) separated solvent and solute molecules \[\to \] solution, \[\Delta {{H}_{3}}\]
    Solution so formed will be ideal if:

    A)
     \[\Delta {{H}_{so\ln }}=\Delta {{H}_{1}}-\Delta {{H}_{2}}-\Delta {{H}_{3}}\]             

    B)
     \[\Delta {{H}_{so\ln }}=\Delta {{H}_{3}}-\Delta {{H}_{1}}-\Delta {{H}_{2}}\]

    C)
    \[\Delta {{H}_{so\ln }}=\Delta {{H}_{1}}+\Delta {{H}_{2}}+\Delta {{H}_{3}}\]

    D)
                      \[\Delta {{H}_{so\ln }}=\Delta {{H}_{1}}+\Delta {{H}_{2}}-\Delta {{H}_{3}}\]

    View Answer play_arrow
  • question_answer22) 
    For the reaction,
    \[{{C}_{3}}{{H}_{8}}(g)+5{{O}_{2}}(g)\xrightarrow[{}]{{}}3C{{O}_{2}}(g)+4{{H}_{2}}O\,(l)\]
    at constant temperature, \[\Delta H-\Delta E\]is                                                                   [AIPMT 2003]

    A)
           + 3 RT           

    B)
     - RT

    C)
     + RT              

    D)
     - 3 RT

    View Answer play_arrow
  • question_answer23)  If the bond energies of \[H-H,\,\,Br-Br\] and\[H-Br\] are 433, 192 and 364 kJ \[mo{{l}^{-1}}\] respectively, then \[\Delta {{H}^{0}}\] for the reaction\[{{H}_{2}}(g)+B{{r}_{2}}(g)\xrightarrow[{}]{{}}2HBr(g)\] is:           [AIPMT (S) 2004]

    A)
     \[-261\text{ }kJ\]

    B)
                     \[+103\text{ }kJ\]        

    C)
     \[+261\text{ }kJ\]        

    D)
          \[-103\text{ }kJ\]

    View Answer play_arrow
  • question_answer24) Standard enthalpy and standard entropy changes for the oxidation of ammonia at 298 K are\[-382.64\,KJ\,mo{{l}^{-1}}\] and \[-145.6\,J{{K}^{-1}}\,mo{{l}^{-1}},\] respectively. Standard Gibbs energy change for the same reaction at 298 K is:                                                                                                                                     [AIPMT (S) 2004]

    A)
     \[-2221.1\,\,kJ\,\,mo{{l}^{-1}}\]

    B)
          \[-339.3\,\,kJ\,\,mo{{l}^{-1}}\]

    C)
     \[-\,439.3\text{ }kJ\text{ }mo{{l}^{-1}}\]

    D)
          \[-523.2\,kJ\,mo{{l}^{-1}}\]

    View Answer play_arrow
  • question_answer25) The maximum number of molecules is present in:                                                    [AIPMT (S) 2004]

    A)
     \[15\,L\] of \[{{H}_{2}}\] gas at STP

    B)
          \[5\,L\] of \[{{N}_{2}}\] gas at STP

    C)
     0.5 g of \[{{H}_{2}}\] gas

    D)
          10 g of \[{{O}_{2}}\]

    View Answer play_arrow
  • question_answer26) Considering entropy (S) as a thermodynamic parameter, the criterion for the spontaneity of any process is:                                                                                                                                                           [AIPMT (S) 2004]

    A)
     \[\Delta \,{{S}_{\text{system}}}+\Delta {{S}_{\text{surroundings}}}>0\]

    B)
     \[\Delta \,{{S}_{\text{system}}}-\Delta {{S}_{\text{surroundings}}}>0\]

    C)
     \[\Delta \,{{S}_{\text{system}}}>0\] only

    D)
     \[\Delta {{S}_{\text{surroundings}}}>0\] only

    View Answer play_arrow
  • question_answer27) The work done during the expansion of a gas from a volume of \[4\,d{{m}^{3}}\] to \[6\,d{{m}^{3}}\] against a constant external pressure of 3 atm, is:                                                                                                [AIPMT (S) 2004]

    A)
     \[-\,\,6\,\,J\]      

    B)
          \[-\,\,608\,\,J\]

    C)
     \[+\text{ }304\text{  }J\]          

    D)
          \[-\text{ }304\text{ }J\]

    View Answer play_arrow
  • question_answer28) A reaction occurs spontaneously if:                                                                                 [AIPMT (S) 2005]

    A)
      \[T\Delta S<\Delta H\] and both \[\Delta H\] and \[\Delta S\] are +ve

    B)
     \[T\Delta S>\Delta H\] and both \[\Delta H\] and \[\Delta S\] are +ve

    C)
           \[T\Delta S=\Delta H\] and both \[\Delta H\] and \[\Delta S\] are +ve

    D)
          \[T\Delta S>\Delta H\] and  \[\Delta H\] is + ve and \[\Delta S\] is -ve

    View Answer play_arrow
  • question_answer29) Which of the following pairs of a chemical reaction is certain to result in a spontaneous reaction? [AIPMT (S) 2005]

    A)
     Exothermic and decreasing disorder

    B)
          Endothermic and increasing disorder

    C)
          Exothermic and increasing disorder          

    D)
          Endothermic and decreasing disorder

    View Answer play_arrow
  • question_answer30) The absolute enthalpy of neutralisation of the reaction: \[MgO(s)+2HCl\,(aq)\,MgC{{l}_{2}}(aq)\] \[+{{H}_{2}}O\,(l)\] will be:                                                                                             [AIPMT (S) 2005]

    A)
           less than \[-\text{ }57.33\text{ }kJ\text{ }mo{{l}^{-1}}\]

    B)
     \[-\text{ }57.33\text{ }kJ\text{ }mo{{l}^{-1}}\]

    C)
     greater than \[-\text{ }57.33\text{ }kJ\text{ }mo{{l}^{-1}}\]              

    D)
     \[\text{ }57.33\text{ }kJ\text{ }mo{{l}^{-1}}\]

    View Answer play_arrow
  • question_answer31) 
    Equilibrium constants \[{{K}_{1}}\] and \[{{K}_{2}}\] for the following equilibria:
    \[{{N}_{2}}(g)+\frac{1}{2}{{O}_{2}}\,N{{O}_{2}}(g)\,\] and
    \[2N{{O}_{2}}(g)\,2NO(g)+{{O}_{2}}(g)\]
    are related as:                                                                                                            [AIPMT (S) 2005]

    A)
           \[{{K}_{2}}=\frac{1}{{{K}_{1}}}\]                

    B)
     \[{{K}_{2}}=K_{1}^{2}\]      

    C)
     \[{{K}_{2}}=\frac{{{K}_{1}}}{2}\]                

    D)
     \[{{K}_{2}}=\frac{1}{K_{1}^{2}}\]

    View Answer play_arrow
  • question_answer32) Identify the correct statement for change of Gibbs energy for a system \[(\Delta {{G}_{system}})\] at constant temperature and pressure:                                                                                                                         [AIPMT (S) 2006]

    A)
      If \[\Delta {{G}_{\text{system}}}>0,\] the process is spontaneous

    B)
           If \[\Delta {{G}_{\text{system}}}=0,\] the system has attained equilibrium

    C)
           If \[\Delta {{G}_{\text{system}}}=0,\] the system is still moving in a particular direction

    D)
           If \[\Delta {{G}_{\text{system}}}<0,\] the process is not spontaneous

    View Answer play_arrow
  • question_answer33) Assume each reaction is carried out in an open container. For which reaction will \[\Delta H=\Delta E\]? [AIPMT (S) 2006]

    A)
     \[{{H}_{2}}(g)+B{{r}_{2}}(g)\,2HBr\,(g)\]

    B)
                      \[C\,(s)+2{{H}_{2}}O\,\,(g)\,2{{H}_{2}}\,\,(g)+C{{O}_{2}}\,(g)\]

    C)
     \[PC{{l}_{5}}\,\,(g)\,\,~PC{{l}_{3}}\,\,(g)+C{{l}_{2}}\,\,(g)\]

    D)
     \[2\,CO\,\,(g)\text{ }+\text{ }{{O}_{2}}\,\,(g)\,\,2C{{O}_{2}}\,(s)\]

    View Answer play_arrow
  • question_answer34) The enthalpy and entropy change for the reaction: \[B{{r}_{2}}(l)+C{{l}_{2}}(g)\to 2BrCl(g)\] are \[30\,\,kJ\,\,mo{{l}^{-1}}\] and \[105\,\,k{{J}^{-1}}\,\,mo{{l}^{-1}}\] respectively. The temperature at which the reaction will be in equilibrium is:                                                                                                                                     [AIPMT (S) 2006]

    A)
     285.7 K             

    B)
     273 K

    C)
     450 K    

    D)
             300 K

    View Answer play_arrow
  • question_answer35) 
    For the reaction,
    \[C{{H}_{4}}(g)+2{{O}_{2}}(g)\rightleftharpoons C{{O}_{2}}(g)+2{{H}_{2}}O(\ell )\,,\]\[{{\Delta }_{r}}H=-170.8\,kJ\,mo{{l}^{-1}}\]
    Which of the following statements is not true?                                                                    [AIPMT (S) 2006]

    A)
     At equilibrium, the concentrations of \[C{{O}_{2}}\,(g)\] and \[{{H}_{2}}O\,(l)\] are not equal

    B)
                 The equilibrium constant for the reaction is given by \[{{K}_{p}}=\frac{[C{{O}_{2}}]}{[C{{H}_{4}}][{{O}_{2}}]}\]

    C)
          Addition of \[C{{H}_{4}}\left( g \right)\] or \[{{O}_{2}}(g)\] at equilibrium will cause a shift to the right

    D)
          The reaction is exothermic

    View Answer play_arrow
  • question_answer36) 
    The following equilibrium constants are given:                                                                 [AIPMT (S) 2007]
    \[{{N}_{2}}+3{{H}_{2}}\,\rightleftharpoons \,2N{{H}_{3}}\,;\,{{K}_{1}}\]
    \[{{N}_{2}}+{{O}_{2}}\,\,\rightleftharpoons \,2NO\,;\,{{K}_{2}}\]         
    \[{{H}_{2}}+1/2\,{{O}_{2}}\,\rightleftharpoons \,{{H}_{2}}O\,;\,{{K}_{3}}\]
    The equilibrium constant for the oxidation of \[N{{H}_{3}}\] by oxygen to give NO is:

    A)
           \[{{K}_{2}}K_{3}^{3}/{{K}_{1}}\]    

    B)
          \[{{K}_{2}}\,K_{3}^{2}/{{K}_{1}}\]

    C)
     \[K_{2}^{2}\,{{K}_{3}}/{{K}_{1}}\]

    D)
                      \[{{K}_{1}}\,{{K}_{2}}/{{K}_{3}}\]

    View Answer play_arrow
  • question_answer37) 
    Consider the following reactions:                                                                                       [AIPMT (S) 2007]
    (i) \[{{H}^{+}}(aq)+O{{H}^{-}}(aq)={{H}_{2}}O(l)\]\[\Delta H=-{{x}_{1}}\,kJ\,mo{{l}^{-1}}\]
    (ii) \[{{H}_{2}}(g)+\frac{1}{2}{{O}_{2}}(g)={{H}_{2}}O(l)\]\[\Delta H=-{{x}_{2}}\,kJ\,mo{{l}^{-1}}\]
    (iii) \[C{{O}_{2}}(g)+{{H}_{2}}(g)=CO(g)+{{H}_{2}}O(l)\]\[-{{x}_{3}}\,kJ\,mo{{l}^{-1}}\]
    (iv) \[+{{x}_{4}}\,kJ\,mo{{l}^{-1}}\]
    Enthalpy of formation of \[{{H}_{2}}O(l)\] is:      

    A)
                 \[-{{x}_{2}}\,kJ\,mo{{l}^{-1}}\]                     

    B)
     \[+{{x}_{3}}\,kJ\,mo{{l}^{-1}}\]

    C)
     \[-{{x}_{4}}\,kJ\,mo{{l}^{-1}}\]         

    D)
          \[-{{x}_{1}}\,kJ\,mo{{l}^{-1}}\]

    View Answer play_arrow
  • question_answer38) Given that bond energies of \[H-H\] and \[Cl-Cl\]  are \[430\text{ }kJ\text{ }mo{{l}^{-1}}\] and \[240\text{ }kJ\text{ }mo{{l}^{-1}}\] respectively and \[\Delta {{H}_{f}}\] for \[HCl\] is \[-90\text{ }kJ\text{ }mo{{l}^{-1}}\]. Bond enthalpy' of \[HCl\] is:                                                                                                                   [AIPMT (S) 2007]

    A)
     \[290\text{ }kJ\text{ }mo{{l}^{-1}}\]

    B)
                      \[380\text{ }kJ\text{ }mo{{l}^{-1}}\]

    C)
    \  \[425\text{ }kJ\text{ }mo{{r}^{-1}}\]   

    D)
      \[245\text{ }kJ\text{ }mo{{l}^{-1}}\]

    View Answer play_arrow
  • question_answer39) 
    The equilibrium constant of the reaction:                                                                           [AIPMT (S) 2007]
    \[Cu(s)+2A{{g}^{+}}(aq)~C{{u}^{2+}}(aq)+2Ag(s);\]
    \[E{}^\circ =0.46V\] at \[298\text{ }K\] is:

    A)
     \[2.4\times {{10}^{10}}\]                    

    B)
     \[2.4\times {{10}^{50}}\]

    C)
     \[4.0\times {{10}^{10}}\]                    

    D)
     \[4.0\times {{10}^{15}}\]

    View Answer play_arrow
  • question_answer40) The efficiency of a fuel cell is given by:                                                                                   [AIPMT (S) 2007]

    A)
     \[\frac{\Delta H}{\Delta G}\]     

    B)
                     \[\frac{\Delta G}{\Delta S}\]

    C)
     \[\frac{\Delta G}{\Delta H}\]     

    D)
                      \[\frac{\Delta S}{\Delta G}\]

    View Answer play_arrow
  • question_answer41) 
    Which of the following are not state functions?                                                                    [AIPMT (S) 2008]
    (I) \[q+W\]                     (II) q
    (III) W                                       (IV) H-TS

    A)
     (I) and (IV)      

    B)
     (II), (III) and (IV)

    C)
     (I), (II) and (III) 

    D)
          (II) and (III)

    View Answer play_arrow
  • question_answer42) For the gas phase reaction, \[PC{{l}_{5}}_{(g)}PC{{l}_{3}}(g)+C{{l}_{2}}(g)\] which of the following conditions are correct? [AIPMT (S) 2008]

    A)
     \[\Delta H=0\] and \[\Delta S<0\]

    B)
     \[\Delta H>0\] and \[\Delta S>0\]

    C)
     \[\Delta H>0\] and \[\Delta S<0\]

    D)
     \[\Delta H>0\] and \[\Delta S<0\]

    View Answer play_arrow
  • question_answer43) What volume of .oxygen gas \[({{O}_{2}})\] measured at \[{{0}^{o}}C\] and 1 atm, is needed to bum completely \[1\,L\] of propane gas \[({{C}_{3}}{{H}_{8}})\] measured under the same conditions?               [AIPMT (S) 2008]

    A)
     7 L                 

    B)
          6 L                 

    C)
     5 L    

    D)
          10 L

    View Answer play_arrow
  • question_answer44) Bond dissociation enthalpy of \[{{H}_{2}},C{{l}_{2}}\] and \[HCl\] are 434, 242 and 431 kJ \[mo{{l}^{-1}}\] respectively. Enthalpy of formation of HCl is                                                                                                                     [AIPMT (S) 2008]

    A)
     \[93\,kJ\,mo{{l}^{-1}}\]          

    B)
          \[-245\,kJ\,mo{{l}^{-1}}\]

    C)
     \[-93\,kJ\,mo{{l}^{-1}}\]         

    D)
          \[245\,kJ\,mo{{l}^{-1}}\]

    View Answer play_arrow
  • question_answer45) 
    The dissociation equilibrium of a gas \[A{{B}_{2}}\] can be represented as                     [AIPMT (S) 2008]
    \[2A{{B}_{2}}(g)2AB(g)+{{B}_{2}}(g)\]
    The degree of dissociation is \['x'\] and is small compared to 1. The expression relating the degree of dissociation \[(x)\] with equilibrium constant \[{{K}_{p}}\] and total pressure p is

    A)
     \[(2{{K}_{p}}/p)\]        

    B)
          \[{{(2{{K}_{p}}/p)}^{1/3}}\]

    C)
     \[{{(2{{K}_{p}}/p)}^{1/2}}\] 

    D)
          \[({{K}_{p}}/p)\]

    View Answer play_arrow
  • question_answer46) 
    The values of \[{{K}_{{{p}_{1}}}}\] and \[{{K}_{{{p}_{2}}}}\] for the reactions  [AIPMT (S) 2008]
    \[XY+Z\]                                   ...(i)
    and                   \[A2B\]                          ..(ii)
    are in ratio of 9 : 1. If degree of dissociation of X and A be equal, then total pressure at equilibrium (i) and (ii) are in the ratio

    A)
     3 : 1        

    B)
     1 : 9                

    C)
     36 : 1      

    D)
          1 : 1

    View Answer play_arrow
  • question_answer47) 
    The value of equilibrium constant of the reaction \[HI(g)\frac{1}{2}{{H}_{2}}(g)+\frac{1}{2}{{I}_{2}}\] is 8.0.                                                                                                                 
    The equilibrium constant of the reaction                                                                          [AIPMT (S) 2008]
    \[{{H}_{2}}(g)+{{I}_{2}}(g)2HI(g)\] will be

    A)
     \[\frac{1}{16}\]            

    B)
     \[\frac{1}{64}\]

    C)
     16                   

    D)
          \[\frac{1}{8}\]

    View Answer play_arrow
  • question_answer48) 
    From the following bond energies:                                                  [AIPMT (S) 2009]
    \[H-H\] bond energy: 431.37 kJ \[mo{{l}^{-1}}\]
    \[C=O\] bond energy: 606.10 kJ \[mo{{l}^{-1}}\]
    \[C-C\] bond energy: 336.49 kJ \[mo{{l}^{-1}}\]
    \[C-H\] bond energy: 410.50 kJ  \[mo{{l}^{-1}}\]
    Enthalpy for the reaction,
    \[\underset{\begin{smallmatrix}  | \\  H \end{smallmatrix}}{\overset{\begin{smallmatrix}  H \\  | \end{smallmatrix}}{\mathop{C}}}\,=\underset{\begin{smallmatrix}  | \\  H \end{smallmatrix}}{\overset{\begin{smallmatrix}  H \\  | \end{smallmatrix}}{\mathop{C}}}\,+H-\xrightarrow{{}}H-\underset{\begin{smallmatrix}  | \\  H \end{smallmatrix}}{\overset{\begin{smallmatrix}  H \\  | \end{smallmatrix}}{\mathop{C}}}\,-\underset{\begin{smallmatrix}  | \\  H \end{smallmatrix}}{\overset{\begin{smallmatrix}  H \\  | \end{smallmatrix}}{\mathop{C}}}\,-H\] will be

    A)
     \[1523.6\,kJ\,mo{{l}^{-1}}\]

    B)
          \[-243.6\,kJ\,mo{{l}^{-1}}\]

    C)
     \[-120.0\,kJ\,mo{{l}^{-1}}\]

    D)
          \[553.0\,kJ\,mo{{l}^{-1}}\]

    View Answer play_arrow
  • question_answer49) The values of \[\Delta H\] and \[\Delta S\] for the reaction, \[{{C}_{(\text{graphits)}}}+C{{O}_{2}}(g)\xrightarrow[{}]{{}}\,2\,CO\,(g)\] are 170 kJ and \[170\,J{{K}^{-1}},\] respectively. This reaction will be spontaneous at                                                          [AIPMT (S) 2009]

    A)
     710 K              

    B)
          910 K  

    C)
     1110 K     

    D)
      510 K

    View Answer play_arrow
  • question_answer50) The energy absorbed by each molecule \[({{A}_{2}})\] of a substance is \[4.4\times {{10}^{-19}}\,J\] and bond energy per molecule is \[4.0\times {{10}^{-19}}\,J\]. The kinetic energy of the molecule per atom will be [AIPMT (S) 2009]

    A)
     \[2.0\times {{10}^{-\,20}}\,J\]

    B)
     \[2.2\times {{10}^{-\,19}}\,J\]

    C)
     \[2.0\times {{10}^{-\,19}}\,J\] 

    D)
          \[4.0\times {{10}^{-\,20}}\,J\]

    View Answer play_arrow
  • question_answer51) For an endothermic reaction, energy of activation is \[{{E}_{a}}\] and enthalpy of reaction is \[\Delta H\] (both of these in kJ/mol). Minimum value of \[{{E}_{a}}\]  will be                                                               [AIPMT (S) 2010]

    A)
     less than \[\Delta H\]   

    B)
          equal to \[\Delta H\]

    C)
     more than \[\Delta H\] 

    D)
          equal to zero

    View Answer play_arrow
  • question_answer52) Standard entropies of \[{{X}_{2}},{{Y}_{2}}\] and \[X{{Y}_{3}}\] are 60, 40 and \[50\,J\,{{K}^{-1}}\,mo{{l}^{-1}}\] respectively. For the reaction \[\frac{1}{2}{{X}_{2}}+\frac{3}{2}{{Y}_{2}}X{{Y}_{3}};\Delta H=-30kJ,\] to be at equilibrium, the temperature should be                                                                                 [AIPMT (S) 2010]

    A)
     750 K              

    B)
          1000 K

    C)
     1250 K            

    D)
          500 K

    View Answer play_arrow
  • question_answer53) 
    Match List I (equations) with List II (types of process) and select the correct option.          [AIPMT (M) 2010]
    List I (Equations) List II (Type of process)
    A. A. \[{{K}_{p}}>Q\] 1 Non-spontaneous
    B.  \[\Delta {{G}^{o}}<RT\,\,\ln \,Q\] 2 Equilibrium
    C. C. \[{{K}_{p}}=Q\] 3  Spontaneous and endothermic
    D. \[T>\frac{\Delta H}{\Delta S}\] 4 Spontaneous

    A)
      1                                       2    3    4

    B)
      3    4    2    1

    C)
      4     1    2 3

    D)
      2 1 4 3

    View Answer play_arrow
  • question_answer54) Three moles of an ideal gas expanded spontaneously into vacuum. The work done will be        [AIPMT (M) 2010]

    A)
     infinite   

    B)
                      3 J                  

    C)
     9 J                  

    D)
          zero

    View Answer play_arrow
  • question_answer55) For vaporisation of water at 1 atm pressure, the values of \[\Delta H\] and \[\Delta S\] are \[40.63\,kJ\,mo{{l}^{-1}}\] and \[108.8\,J{{K}^{-1}}\,mo{{l}^{-1}}\], respectively. The temperature when Gibbs energy change \[(\Delta G)\] for this transformation will be zero, is                                                                        [AIPMT (M) 2010]

    A)
     273.4 K      

    B)
     393.4 K           

    C)
     373.4 K              

    D)
          293.4 K

    View Answer play_arrow
  • question_answer56)             
    The following two reactions are known                                           [AIPMT (M) 2010]
    \[F{{e}_{2}}{{O}_{3}}(s)+3CO(g)\xrightarrow[{}]{{}}2Fe(s)+3C{{O}_{2}}(g);\]\[\Delta H=-26.8\,kJ\]
    \[FeO(s)+CO(g)\xrightarrow[{}]{{}}Fe(s)+C{{O}_{2}}(g);\]\[\Delta H=-16.5\,kJ\]
    The value of \[\Delta H\] for the following reaction
    \[F{{e}_{2}}{{O}_{3}}(s)+CO(g)\xrightarrow[{}]{{}}2FeO(s)+C{{O}_{2}}(g)\]

    A)
     \[+10.3\,kJ\]          

    B)
          \[-\,43.3\,kJ\]

    C)
     \[-\,10.3\,kJ\]     

    D)
                      \[+\,6.2\,kJ\]

    View Answer play_arrow
  • question_answer57) If the enthalpy change for the transition of liquid water to steam is \[30\,kJ\,mo{{l}^{-1}}\] at \[{{27}^{o}}C,\] the entropy change for the process would be                                                                                [AIPMT (S) 2011]

    A)
     \[1.0\,\,J\,mo{{l}^{-1}}\,{{K}^{-1}}\]

    B)
     \[0.1\,\,J\,mo{{l}^{-1}}\,{{K}^{-1}}\]

    C)
     \[100\,J\,mo{{l}^{-1}}\,{{K}^{-1}}\] 

    D)
     \[10\,J\,mo{{l}^{-1}}\,{{K}^{-1}}\]

    View Answer play_arrow
  • question_answer58)  Which of the following is correct option for   free expansion of an ideal gas under adiabatic condition? [AIPMT (S) 2011]

    A)
     \[q\ne 0,\Delta T=0,W=0\]

    B)
          \[q=0,\Delta T=0,W=0\]

    C)
          \[q=0,\Delta T<0,W\ne 0\]

    D)
     \[q=0,\Delta T\ne 0,W=0\]

    View Answer play_arrow
  • question_answer59)  
    Enthalpy change for the reaction,
    \[4H(g)\xrightarrow[{}]{{}}2{{H}_{2}}(g)\] is \[\text{ }869.6\text{ }kJ\]
    The dissociation energy of \[H-H\] bond is

    A)
     \[-869.6\,kJ\]    

    B)
          \[+\,434.8\,kJ\]

    C)
     \[+\,217.4\,kJ\]

    D)
          \[-\,434.8\,kJ\]

    View Answer play_arrow
  • question_answer60) 
    Consider the following processes \[\Delta H\,(kJ/\,mol)\]                                                        [AIPMT (M) 2011]
    \[1/2A\to B\]                  + 150
    \[3B\to 2C+D\]              - 125
    \[E+A\to 2D\]                + 350
    For \[B+D\to E+2C,\Delta H\] will be

    A)
     525 kJ/mol    

    B)
          - 175 kJ/mol

    C)
     - 325 kJ/mol    

    D)
          325 kJ/mol

    View Answer play_arrow
  • question_answer61) In which of the following reactions, standard reaction entropy changes \[(\Delta {{S}^{o}})\] is positive and standard Gibb's energy change \[(\Delta {{S}^{o}})\] decreases    sharply   with    increasing temperature?     [AIPMT (S) 2012]

    A)
     \[C\,(\text{graphite})+\frac{1}{2}{{O}_{2}}(g)\xrightarrow[{}]{{}}CO(g)\]

    B)
     \[CO(g)+\frac{1}{2}{{O}_{2}}(g)\xrightarrow[{}]{{}}C{{O}_{2}}(g)\]

    C)
     \[Mg(s)+\frac{1}{2}{{O}_{2}}(g)\xrightarrow[{}]{{}}MgO(s)\]

    D)
     \[\frac{1}{2}C(\text{graphite})+\frac{1}{2}{{O}_{2}}(g)\xrightarrow[{}]{{}}\frac{1}{2}C{{O}_{2}}(g)\]

    View Answer play_arrow
  • question_answer62) The enthalpy of fusion of water is kcal/mol. The molar entropy change for the melting of ice at \[{{0}^{o}}C\] is                            [AIPMT (S) 2012]

    A)
     10.52 cal/(mol K)

    B)
         21.04 cal/(mol K)

    C)
     5.260 cal/ (mol K)

    D)
         0.526 cal/(mol K)

    View Answer play_arrow
  • question_answer63) Standard enthalpy of vaporization \[{{\Delta }_{vap}}{{H}^{\Theta }}\] for water at \[{{100}^{o}}C\] is \[40.66\,kJ\,mo{{l}^{-1}}\]. The internal energy of vaporisation .of water at \[{{100}^{o}}C\] (in kJ \[mo{{l}^{-1}}\] is (Assume water vapour to behave like an ideal gas). [AIPMT (S) 2012]

    A)
     + 37.56        

    B)
     - 43.76

    C)
     + 43.76          

    D)
          + 40.66

    View Answer play_arrow
  • question_answer64) Equal volumes of two monoatomic gases, A and B, at same temperature and pressure are mixed. The ratio of specific heats \[(cp/cv)\] of the mixture will be                                                                [AIPMT (M) 2012]

    A)
     0.83   

    B)
          1.50

    C)
     3.3      

    D)
          1.67

    View Answer play_arrow
  • question_answer65) 
    The Gibbs’ energy for the decomposition of\[A{{l}_{2}}{{O}_{3}}\] at \[{{500}^{o}}C\] is as follows
    \[\frac{2}{3}A{{l}_{2}}{{O}_{3}}\xrightarrow[{}]{{}}\frac{4}{3}Al+{{O}_{2}};\] \[{{\Delta }_{r}}G=+\,960\,kJ\,mo{{l}^{-1}}\]
    The potential difference needed for the electrolytic reduction of aluminium oxide \[(A{{l}_{2}}{{O}_{3}})\] at \[{{500}^{o}}C\] is at least             [AIPMT (M) 2012]

    A)
     4.5 V             

    B)
          3.0 V   

    C)
     2.5 V                  

    D)
          5.0 V

    View Answer play_arrow
  • question_answer66) 
    Using   the   Gibbs   energy   change                                                                                  [AIPMT 2014]
    \[\Delta {{G}^{{}^\circ }}=+63.3\,\,kJ\] for the following reaction,\[A{{g}_{2}}C{{O}_{3}}(s)r\,2A{{g}^{+}}(aq)+CO_{3}^{2-}(aq)\]
    the \[{{K}_{sp}}\] of \[A{{g}_{2}}C{{O}_{3}}(s)\] in water at \[{{25}^{o}}C\] is \[(R=8.314\,J{{K}^{-1}}\,mo{{l}^{-1}})\]

    A)
     \[3.2\times {{10}^{-26}}\]       

    B)
          \[8.0\times {{10}^{-12}}\]

    C)
     \[2.9\times {{10}^{-3}}\]        

    D)
          \[7.9\times {{10}^{-2}}\]

    View Answer play_arrow
  • question_answer67) Which of the following statements is correct for the spontaneous absorption of a gas?               [AIPMT 2014]

    A)
     \[\Delta S\] is negative and therefore, \[\Delta H\] should be highly positive

    B)
     \[\Delta S\] is negative and therefore, \[\Delta H\] should be highly negative

    C)
     \[\Delta S\] is positive and therefore, \[\Delta H\] should be negative

    D)
     \[\Delta S\] is positive and therefore, \[\Delta H\] should also be highly positive.

    View Answer play_arrow
  • question_answer68) 
    For the reaction,\[{{X}_{2}}{{O}_{4}}(l)\to 2X{{O}_{2}}(g)\]
    \[\Delta U=2.1\,kcal,\,\,\Delta S=20\,cal\,\,{{K}^{-1}}\] at 300 K.
    Hence, \[\Delta G\] is                                                                                               [AIPMT 2014]

    A)
     2.7 kcal          

    B)
          -2.7 kcal          

    C)
     9.3 kcal          

    D)
          -9.3 kcal

    View Answer play_arrow
  • question_answer69) Which of the following organic compounds has same hybridisation as its combustion product\[-(C{{O}_{2}})\]?            [AIPMT 2014]

    A)
     Ethane

    B)
          Ethyne

    C)
     Ethene             

    D)
     Ethanol

    View Answer play_arrow
  • question_answer70) Which of the following statements is correct for a reversible process in a state of equilibrium? [NEET 2015 ]

    A)
     \[\Delta G=-2.30\,\,RT\,\,\,\log \,\,K\]

    B)
     \[\Delta G=2.30\,\,RT\,\,\,\log \,\,K\]

    C)
     \[\Delta {{G}^{o}}=-2.30\,\,RT\,\,\,\log \,\,K\]

    D)
     \[\Delta {{G}^{{}^\circ }}=2.30\,\,RT\,\,\,\log \,\,K\]

    View Answer play_arrow
  • question_answer71) The heat of combustion of carbon to \[C{{O}_{2}}\] is \[-393.5\,\,kJ/mol\]. The heat released upon the formation of 35.2 g of \[C{{O}_{2}}\] from carbon and oxygen gas is                                                      [NEET 2015 (Re)]

    A)
     - 315 kJ

    B)
          + 315 kJ

    C)
     - 630 kJ           

    D)
          - 3.15 kJ

    View Answer play_arrow
  • question_answer72) 
    The formation of the oxide ion \[{{O}^{2-}}(g),\] from oxygen atom requires first an exothermic and then an endothermic step as shown below,                                                                                           [NEET 2015 (Re)]
    \[O(g)+{{e}^{-}}\to {{O}^{-}}(g);\,\,{{\Delta }_{f}}{{H}^{{}^\circ }}=-141\,\,KJ\,mo{{l}^{-1}}\]
    \[{{O}^{-}}(g)+{{e}^{-}}\xrightarrow{\,}\,{{O}^{2-}}\,(g);\,{{\Delta }_{f}}{{H}^{o}}\]\[=\,\,+\,780\,\,kJ\,m\,o{{l}^{-1}}\]
    Thus, process of formation of \[{{O}^{2-}}\] in gas phase is unfavourable even though \[{{O}^{2-}}\] is isoelectronic with neon. It is due to the fact that

    A)
     electron repulsion outweighs the stability gained by achieving noble gas configuration

    B)
     \[{{O}^{-}}\] ion has comparatively smaller size than oxygen atom

    C)
     Oxygen is more electronegative

    D)
     addition of electron in oxygen result in large size of the ion

    View Answer play_arrow
  • question_answer73) The correct thermodynamic conditions for the spontaneous reaction at all temperatures is         [NEET - 2016]

    A)
     \[\Delta H<0\] and \[\Delta S=0\]

    B)
          \[\Delta H>0\] and \[\Delta S<0\]

    C)
     \[\Delta H<0\] and \[\Delta S>0\]

    D)
     \[\Delta H<0\] and \[\Delta S<0\]

    View Answer play_arrow
  • question_answer74) 
    Consider the following liquid - vapour equilibrium.                                               [NEET - 2016]
    \[\text{Liquid }\,\text{Vapour}\]
    Which of the following relations is correct?

    A)
     \[\frac{d\ell nG}{d{{T}^{2}}}=\frac{\Delta {{\Eta }_{v}}}{R{{T}^{2}}}\]

    B)
          \[\frac{d\ell nP}{dT}=\frac{-\Delta {{\Eta }_{v}}}{RT}\]

    C)
     \[\frac{d\ell nP}{d{{T}^{2}}}=\frac{-\Delta {{\Eta }_{v}}}{{{T}^{2}}}\]

    D)
          \[\frac{d\ell nP}{dT}=\frac{\Delta {{\Eta }_{v}}}{R{{T}^{2}}}\]

    View Answer play_arrow
  • question_answer75) A gas is allowed to expand in a well-insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L. The change in internal energy \[\Delta U\] of the gas in joules will be [NEET-2017]

    A)
     +505 J            

    B)
          1136.25 J

    C)
     - 500 J

    D)
          - 505 J

    View Answer play_arrow
  • question_answer76) For a given reaction, \[\Delta H=35.5\,kJ\,mo{{l}^{-1}}\] and \[\Delta S=83.6\,J{{K}^{-1}}\,mo{{l}^{-1}}.\] The reaction is spontaneous at : (Assume that \[\Delta H\] and \[\Delta S\] do not vary with temperature)     [NEET-2017]

    A)
     \[T>298\text{ }K\]       

    B)
          \[T<425\text{ }K\]

    C)
     \[T>425\,K\]    

    D)
          All temperatures

    View Answer play_arrow
  • question_answer77) The bond dissociation energies of \[{{\text{X}}_{\text{2}}}\text{,}{{\text{Y}}_{\text{2}}}\] and \[\text{XY}\] are in the ratio of 1 : 0.5 : 1. \[\Delta \text{H}\] for the formation of XY is \[\text{--200 kJ mo}{{\text{l}}^{\text{--1}}}\]. The bond dissociation energy of \[{{\text{X}}_{\text{2}}}\] will be                         [NEET - 2018]

    A)
     \[\text{800 kJ mo}{{\text{l}}^{\text{--1}}}\]

    B)
          \[\text{100 kJ mo}{{\text{l}}^{\text{--1}}}\]

    C)
     \[\text{200 kJ mo}{{\text{l}}^{\text{--1}}}\]

    D)
          \[\text{400 kJ mo}{{\text{l}}^{\text{--1}}}\]

    View Answer play_arrow
  • question_answer78) In which case change in entropy is negative?                                                           [NEET 2019]

    A)
     Sublimation of solid to gas

    B)
     \[2H(g)\to {{H}_{2}}(g)\]

    C)
     Evaporation of water

    D)
     Expansion of a gas at temperature

    View Answer play_arrow
  • question_answer79) Under isothermal condition, a gas at 300 K expands from 0.1 L to 0.25 L against a constant external pressure of 2 bar. The work done by the gas is [Given that 1 L bar = 100 J]                                            [NEET 2019]

    A)
     25 J                

    B)
          30 J

    C)
     -30 J   

    D)
          5 kJ

    View Answer play_arrow
  • question_answer80) For the reaction, \[2\,Cl\,(g)\xrightarrow{{}}~C{{l}_{2}}(g)\], the correct option is:                           [NEET 2020]

    A)
     \[{{\Delta }_{r}}H>0\] and \[{{\Delta }_{r}}S<0\]

    B)
     \[{{\Delta }_{r}}H<0\] and \[{{\Delta }_{r}}S>0\]

    C)
     \[{{\Delta }_{r}}H<0\] and \[{{\Delta }_{r}}S<0\]

    D)
     \[{{\Delta }_{r}}H>0\] and \[{{\Delta }_{r}}S>0\]

    View Answer play_arrow
  • question_answer81) The correct option for free expansion of an ideal gas under adiabatic condition is                     [NEET 2020]

    A)
     \[q=0,\text{ }\Delta T<0\] and \[w>0\]

    B)
     \[q<0,\text{ }\Delta T=0\] and \[w=0\]

    C)
     \[q>0,\text{ }\Delta T>0\] and \[w>0\]

    D)
     \[q=0,\text{ }\Delta T=0\] and \[w=0\]

    View Answer play_arrow

Study Package

NEET PYQ-Thermodynamics
 

   


You need to login to perform this action.
You will be redirected in 3 sec spinner