JCECE Engineering JCECE Engineering Solved Paper-2013

  • question_answer
    The inverse of the function\[f(x)=\log ({{x}^{2}}+3x+1),\,\,x\in [1,\,\,3]\], assuming it to be an onto function, is

    A) \[\frac{-3+\sqrt{5+4{{e}^{x}}}}{2}\]        

    B) \[\frac{-3\pm \sqrt{5+4{{e}^{x}}}}{2}\]

    C) \[\frac{-3-\sqrt{5+4{{e}^{x}}}}{2}\]         

    D)  None of the above

    Correct Answer: B

    Solution :

    Given,\[f(x)=\log ({{x}^{2}}+3x+1)\] \[\therefore \]  \[f'(x)=\frac{2x+3}{({{x}^{2}}+3x+1)}>0\]    \[\forall x\in [1,\,\,3]\]. which is a strictly increasing function. Thus, \[f(x)\] is injective, given that \[f(x)\] is onto. Hence, the given function \[f(x)\] is invertible. Now,\[f\{{{f}^{-1}}(x)\}=x\] \[\Rightarrow \]               \[\log {{\{{{f}^{-1}}(x)\}}^{2}}+3\{{{f}^{-1}}(x)+1\}=x\] \[\Rightarrow \]               \[{{\{{{f}^{-1}}(x)\}}^{2}}+\{{{f}^{-1}}(x)\}+1-{{e}^{x}}=0\] \[\therefore \]  \[{{f}^{-1}}(x)=\frac{-3\pm \sqrt{9-4\cdot 1(1-{{e}^{x}})}}{2}\]                 \[=\frac{-3\pm \sqrt{5+4{{e}^{x}}}}{2}\] \[\Rightarrow \]\[{{f}^{-1}}(x)=\frac{-3\pm \sqrt{5+4{{e}^{x}}}}{2}\,\,\,\,[\because {{f}^{-1}}(x)\in [1,\,\,3]]\] Hence,\[{{f}^{-1}}(x)=\frac{-3\pm \sqrt{5+4{{e}^{x}}}}{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner