JCECE Engineering JCECE Engineering Solved Paper-2010

  • question_answer
    \[\int_{0}^{\pi /2}{{{\cos }^{5}}\left( \frac{x}{2} \right)}\sin x\,\,dx\]is equal to

    A) \[\frac{2}{7}\left( 1-\frac{1}{8\sqrt{2}} \right)\]                

    B) \[-\frac{4}{7}\left( 1-\frac{1}{8\sqrt{2}} \right)\]

    C) \[\frac{4}{7}\left( 1-\frac{1}{8\sqrt{2}} \right)\]                

    D) \[-\frac{2}{7}\left( 1-\frac{1}{8\sqrt{2}} \right)\]

    Correct Answer: C

    Solution :

    \[\int_{0}^{\pi /2}{{{\cos }^{5}}\left( \frac{x}{2} \right)\sin x\,\,dx}\] \[=\int_{0}^{\pi /2}{{{\cos }^{5}}\left( \frac{x}{2} \right)\cdot 2\sin \left( \frac{x}{2} \right)\cos \left( \frac{x}{2} \right)dx}\] \[=2\int_{0}^{\pi /2}{\sin \left( \frac{x}{2} \right){{\cos }^{6}}\left( \frac{x}{2} \right)dx}\] By putting\[\cos \frac{x}{2}=t\],                 \[-\frac{1}{2}\sin \frac{x}{2}dx=dt\]                 \[\sin \frac{x}{2}dx=-2dt\]                 \[\sin \frac{x}{2}dx=-2dt\] The given integral becomes                 \[2\int_{0}^{\pi /2}{{{t}^{6}}(-2)dt}\]                 \[=-4\int_{0}^{\pi /2}{{{t}^{6}}\,\,dt}\]                 \[=-4\left[ \frac{{{t}^{7}}}{7} \right]_{0}^{\pi /2}\]                 \[=-\frac{4}{7}\left[ {{\cos }^{7}}\left( \frac{x}{2} \right) \right]_{0}^{\pi /2}\]                 \[=\frac{-4}{7}\left[ {{\cos }^{7}}\left( \frac{\pi }{4} \right)-{{\cos }^{7}}(0) \right]\]                 \[=\frac{-4}{7}\left[ {{\left( \frac{1}{\sqrt{2}} \right)}^{7}}-1 \right]\]                 \[=\frac{4}{7}\left[ 1-\frac{1}{8\sqrt{2}} \right]\]


You need to login to perform this action.
You will be redirected in 3 sec spinner