JCECE Engineering JCECE Engineering Solved Paper-2009

  • question_answer
    \[\int_{0}^{\pi /2}{\frac{x\sin x\cdot \cos x}{{{\cos }^{4}}x+{{\sin }^{4}}x}}dx\]is equal to

    A) \[\frac{{{\pi }^{2}}}{8}\]                               

    B) \[\frac{{{\pi }^{2}}}{16}\]

    C) \[1\]                                     

    D) \[0\]

    Correct Answer: B

    Solution :

    Let\[I=\int_{0}^{\pi /2}{\frac{x\sin x\cos x}{{{\cos }^{4}}x+{{\sin }^{4}}x}}dx\]                    ? (i) \[\Rightarrow \]\[I=\int_{0}^{\pi /2}{\frac{\left( \frac{\pi }{2}-x \right)\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}d}x\]                                ... (ii) On adding Eqs. (i) and (ii), we get                 \[2I=\frac{\pi }{2}\int_{0}^{\pi /2}{\frac{\sin x\cos x}{{{\cos }^{4}}x+{{\sin }^{4}}x}}dx\] \[\Rightarrow \]               \[I=\frac{\pi }{4}\int_{0}^{\pi /2}{\frac{\tan x{{\sec }^{2}}x}{1+{{\tan }^{4}}x}}\]                             (dividing \[Nr\] and \[Dr\] by\[{{\cos }^{4}}x)\] Put,\[{{\tan }^{2}}x=t\Rightarrow 2\tan x{{\sec }^{2}}x\,\,dx=dt\] \[\therefore \]  \[I=\frac{\pi }{4}\int_{0}^{\infty }{\frac{1}{2(1+{{t}^{2}})}dt=\frac{\pi }{8}[{{\tan }^{-1}}t]_{0}^{\infty }}\]                    \[=\frac{\pi }{8}\times \frac{\pi }{2}=\frac{{{\pi }^{2}}}{16}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner