JCECE Engineering JCECE Engineering Solved Paper-2007

  • question_answer
     \[\int_{0}^{\pi /3}{\frac{\cos x+\sin x}{\sqrt{1+\sin 2x}}}dx\]is equal to

    A) \[\frac{4\pi }{3}\]                                            

    B) \[\frac{2\pi }{3}\]

    C) \[\pi \]                                 

    D) \[\frac{\pi }{3}\]

    Correct Answer: D

    Solution :

    Let      \[I=\int_{0}^{\pi /3}{\frac{\cos x+\sin x}{\sqrt{1+2\sin x\cos x}}}dx\]                 \[=\int_{0}^{\pi /3}{\frac{\cos x+\sin x}{\sqrt{{{\cos }^{2}}x+{{\sin }^{2}}x+2\sin x\cos x}}dx}\]                 \[=\int_{0}^{\pi /3}{\frac{\cos x+\sin x}{\sqrt{{{(\cos x+\sin x)}^{2}}}}}dx\]                 \[=\int_{0}^{\pi /3}{\frac{\cos x+\sin x}{\cos x+\sin x}dx=\int_{0}^{\pi /3}{1\,\,dx}=\frac{\pi }{3}}\] Alternate Method:           \[I=\int_{0}^{\pi /3}{\frac{\cos x+\sin x}{\sqrt{1+2\sin x\cos x}}dx}\]                 \[=\int_{0}^{\pi /3}{\frac{\cos x+\sin x}{\sqrt{2-{{(\sin x-\cos x)}^{2}}}}dx}\] Let                  \[\sin x-\cos x=t\] \[\Rightarrow \]               \[(\cos x+\sin x)dx=dt\] \[\therefore \]       \[I=\left[ {{\sin }^{-1}}\frac{(\sin x-\cos x)}{\sqrt{2}} \right]_{0}^{\pi /3}\]                 \[=\left[ {{\sin }^{-1}}\sin \left( x-\frac{\pi }{4} \right) \right]_{0}^{\pi /3}\]                 \[=\left( x-\frac{\pi }{4} \right)_{0}^{\pi /3}=\frac{\pi }{3}-\frac{\pi }{4}-\left( 0-\frac{\pi }{4} \right)\]                 \[=\frac{\pi }{3}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner