JCECE Engineering JCECE Engineering Solved Paper-2006

  • question_answer
    \[\int_{-\pi }^{\pi }{\frac{2x(1+\sin x)}{1+{{\cos }^{2}}x}}dx\]is:

    A) \[\frac{{{\pi }^{2}}}{4}\]                               

    B) \[{{\pi }^{2}}\]

    C) \[zero\]                                               

    D) \[\frac{\pi }{2}\]

    Correct Answer: B

    Solution :

    Key Idea: \[\int_{-\pi }^{\pi }{f(x)}dx\{=2f(x),\] if \[f(x)\]is an even function. \[=0\], if \[f(x)\]is an odd function. Let          \[I=\int_{-\pi }^{\pi }{\frac{2x(1+\sin x)}{1+{{\cos }^{2}}x}dx}\] \[\Rightarrow \]               \[I=\int_{-\pi }^{\pi }{\frac{2x}{1+{{\cos }^{2}}x}dx}\]                 \[+2\int_{-\pi }^{\pi }{\frac{x\sin x}{1+{{\cos }^{2}}x}dx}\] \[\Rightarrow \]               \[I=0+4\int_{0}^{\pi }{\frac{x\sin x}{1+{{\cos }^{2}}x}dx}\] \[\left( \because \,\,\frac{2x}{1+{{\cos }^{2}}x}dx\,\,is\,\,an\,\,odd\,\,function \right)\] \[\Rightarrow \]               \[I=4\int_{0}^{\pi }{\frac{(\pi -x)\sin (\pi -x)}{1+{{\cos }^{2}}(\pi -x)}dx}\] \[\Rightarrow \]               \[I=4\int_{0}^{\pi }{\frac{(\pi -x)\sin x}{1+{{\cos }^{2}}x}dx}\] \[\Rightarrow \]               \[I=4\pi \int_{0}^{\pi }{\frac{\sin x}{1+{{\cos }^{2}}x}dx}\]                                                 \[-4\int_{0}^{\pi }{\frac{x\sin x}{1+{{\cos }^{2}}x}dx}\] \[\Rightarrow \]               \[2I=4\pi \int_{0}^{\pi }{\frac{\sin x}{1+{{\cos }^{2}}x}dx}\] Put         \[\cos x=t\Rightarrow -\sin x\,\,dx=dt\] \[\Rightarrow \]               \[\sin x\,\,dx=-dt\] \[\therefore \]  \[I=2\pi \int_{1}^{-1}{\frac{-dt}{1+{{t}^{2}}}=2\pi }\int_{-1}^{1}{\frac{dt}{1+{{t}^{2}}}}\]                    \[=2\pi [{{\tan }^{-1}}t]_{-1}^{1}\]                    \[=2\pi [{{\tan }^{-1}}(1)-{{\tan }^{-1}}(-1)]\]                    \[=2\pi \left[ \frac{\pi }{4}+\frac{\pi }{4} \right]=2\pi \times \frac{\pi }{2}={{\pi }^{2}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner