JCECE Engineering JCECE Engineering Solved Paper-2006

  • question_answer
    \[{{\cot }^{-1}}(\sqrt{\cos \alpha })-{{\tan }^{-1}}(\sqrt{\cos \alpha })=x\], then\[\sin x\]is equal to:

    A) \[{{\tan }^{2}}\left( \frac{\alpha }{2} \right)\]                     

    B) \[{{\cot }^{2}}\left( \frac{\alpha }{2} \right)\]

    C) \[\tan \alpha \]                

    D) \[\cot \left( \frac{\alpha }{2} \right)\]

    Correct Answer: A

    Solution :

    \[{{\cot }^{-1}}(\sqrt{\cos \alpha })-{{\tan }^{-1}}(\sqrt{\cos \alpha })=x\] \[{{\tan }^{-1}}\left( \frac{1}{\sqrt{\cos \alpha }} \right)-{{\tan }^{-1}}(\sqrt{\cos \alpha })=x\] \[\Rightarrow \]               \[{{\tan }^{-1}}\frac{\frac{1}{\sqrt{\cos \alpha }}-\sqrt{\cos \alpha }}{1+\frac{1}{\sqrt{\cos \alpha }}\sqrt{\cos \alpha }}\] \[\Rightarrow \]               \[{{\tan }^{-1}}\frac{1-\cos \alpha }{2\sqrt{\cos }\alpha }=x\] \[\Rightarrow \]               \[\tan x=\frac{1-\cos \alpha }{2\sqrt{\cos \alpha }}\] \[\Rightarrow \]               \[\cot x=\frac{2\sqrt{\cos \alpha }}{1-\cos \alpha }\] \[\Rightarrow \]     \[\cos \text{ec}x=\frac{1+\cos \alpha }{1-\cos \alpha }\] \[\therefore \]  \[\sin x=\frac{1-\cos \alpha }{1+\cos \alpha }\]                         \[=\frac{1-\left( 1-2{{\sin }^{2}}\frac{\alpha }{2} \right)}{1+2{{\cos }^{2}}\frac{\alpha }{2}-1}\] \[\Rightarrow \]        \[\sin x={{\tan }^{2}}\frac{\alpha }{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner