JCECE Engineering JCECE Engineering Solved Paper-2005

  • question_answer
    If\[x+\frac{1}{x}=2\sin \alpha ,\] \[y+\frac{1}{y}=2\cos \beta \], then\[{{x}^{3}}{{y}^{3}}+\frac{1}{{{x}^{3}}{{y}^{3}}}\]is:

    A) \[2\cos 3(\beta -\alpha )\]          

    B) \[2\cos 3(\beta +\alpha )\]

    C) \[2\sin 3(\beta -\alpha )\]           

    D) \[2\sin 3(\beta +\alpha )\]

    Correct Answer: C

    Solution :

    \[\because \]\[x+\frac{1}{x}=2\sin \alpha ,\,\,y+\frac{1}{y}=2\cos \beta \] \[\therefore \]\[{{x}^{2}}-2\sin \alpha \,x+1=0,\,\,{{y}^{2}}-2\cos \beta y+1=0\] \[\Rightarrow \]               \[x=\frac{2\sin \alpha \pm \sqrt{4{{\sin }^{2}}\alpha -4}}{2}\] \[\Rightarrow \]               \[x=\sin \alpha \pm i\cos \alpha \] Similarly, \[\therefore \]\[xy=(\sin \alpha \pm i\cos \alpha )(\cos \beta \mp i\sin \beta )\]                 \[y=\cos \beta \mp i\sin \beta \]                 \[=\sin (\beta -\alpha )\pm i\cos (\beta -\alpha )\] and        \[\frac{1}{xy}=\sin (\beta -\alpha )\mp i\cos (\beta -\alpha )\] \[\therefore \]  \[{{(xy)}^{3}}+\frac{1}{{{(xy)}^{3}}}=\sin 3(\beta -\alpha )\]                 \[\pm i\cos 3(\beta -\alpha )+\sin 3(\beta -\alpha )\]                 \[\mp i\cos 3(\beta -\alpha )\]                 \[=2\sin 3(\beta -\alpha )\]


You need to login to perform this action.
You will be redirected in 3 sec spinner