JCECE Engineering JCECE Engineering Solved Paper-2005

  • question_answer
    \[\int{{{x}^{2}}{{(ax+b)}^{-2}}dx}\]is equal to:

    A) \[\frac{2}{{{a}^{2}}}\left( x-\frac{b}{a}x\log (ax+b) \right)+c\]

    B) \[\frac{2}{{{a}^{2}}}\left( x-\frac{b}{a}\log (ax+b) \right)-\frac{{{x}^{2}}}{a(ax+b)}+c\]

    C) \[\frac{2}{{{a}^{2}}}\left( x+\frac{b}{a}\log (ax+b) \right)+\frac{{{x}^{2}}}{a(ax+b)}+c\]

    D) \[\frac{2}{{{a}^{2}}}\left( x+\frac{b}{a}\log (ax+b) \right)-\frac{{{x}^{2}}}{a(ax+b)}+c\]

    Correct Answer: B

    Solution :

    Let\[I=\int{\frac{{{x}^{2}}}{{{(ax+b)}^{2}}}dx}\] Put,        \[ax+b=t\] \[\Rightarrow \]               \[dx=\frac{dt}{a}\] \[\therefore \]  \[I=\frac{1}{{{a}^{3}}}\int{\frac{{{(t-b)}^{2}}}{{{t}^{2}}}dt}\]    \[=\frac{1}{{{a}^{3}}}\int{\left( \frac{{{t}^{2}}+{{b}^{2}}-2bt}{{{t}^{2}}} \right)}dt\] \[=\frac{1}{{{a}^{3}}}\int{\left( 1+\frac{{{b}^{2}}}{{{t}^{2}}}-\frac{2b}{t} \right)dt}\] \[=\frac{1}{{{a}^{3}}}\left( t-\frac{{{b}^{2}}}{t}-2b\log t \right)+c\] \[=\frac{1}{{{a}^{3}}}\left( ax+b-\frac{{{b}^{2}}}{ax+b}-2b\log (ax+b) \right)+c\] \[=\frac{2}{{{a}^{2}}}\left( x-\frac{b}{a}\log (a\,\,x+b) \right)-\frac{{{x}^{2}}}{a(ax+b)}+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner