JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2012

  • question_answer
        If \[\tan x=\frac{b}{a},\]then\[\sqrt{\frac{a+b}{a-b}}+\sqrt{\frac{a-b}{a+b}}\]is equal to

    A)  \[\frac{2\sin x}{\sqrt{\sin 2x}}\]                              

    B)  \[\frac{2\cos x}{\sqrt{\cos 2x}}\]

    C)  \[\frac{2\cos x}{\sqrt{\sin 2x}}\]                             

    D)  \[\frac{2\sin x}{\sqrt{\cos 2x}}\]

    Correct Answer: B

    Solution :

                    Let the roots of the equation\[{{x}^{2}}-x-k=0\]are \[\alpha \]and\[{{\alpha }^{2}}\]. Then,        \[\alpha +{{\alpha }^{2}}=1\]                                ..(i) and        \[\alpha .{{\alpha }^{2}}={{\alpha }^{3}}=-k\] \[\Rightarrow \]               \[\alpha ={{(-k)}^{1/3}}\] On putting this value of a in Eq. (i), we get \[{{(-k)}^{1/3}}+{{(-k)}^{2/3}}=1\]                            ?(ii) On cubing both sides, we get \[(-k)+{{(-k)}^{2}}+3k[{{(-k)}^{1/3}}+{{(-k)}^{2/3}}]=1\] \[\Rightarrow \]               \[-k+{{k}^{2}}-3k({{k}^{2/3}}-{{k}^{1/3}})=1\] \[\Rightarrow \]               \[{{k}^{2}}-k-3k(1)=1\] [Using Eq.(ii)] \[\Rightarrow \]               \[{{k}^{2}}-4k-1=0\] \[\Rightarrow \]               \[lk=\frac{4\pm \sqrt{20}}{2}=2\pm \sqrt{5}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner