JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2006

  • question_answer
        If\[f(x)=x[\sqrt{x}-\sqrt{x+1}],\]then

    A) \[f(x)\]is continuous but not differentiable at\[x=0\]

    B) \[f(x)\]is not differentiable at \[x=0\]

    C) \[f(x)\]is differentiable at\[x=0\]

    D)  none of the above

    Correct Answer: C

    Solution :

                    Key Idea:\[f(x)\]is differentiable function at\[x=a\]if\[\underset{x\to a}{\mathop{\lim }}\,\frac{F(x)-f(a)}{x-a}\]exist. Given, \[f(x)=x[\sqrt{x}-\sqrt{x+1}]\] Since, given function is algebraic and every algebraic function is continuous. \[\therefore \]\[f(x)\]is continuous at\[x=0\]. Now we will check differentiability of\[f(x)\]at \[x=0\]. \[LF(0)=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f(0-h)-f(0)}{0-h-0}\] \[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\frac{-h[\sqrt{-h}-\sqrt{-h+1}]}{-h}=-1\] \[RF(0)=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f(0+h)-f(0)}{0+h-0}\]                 \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{h(\sqrt{h}-\sqrt{h+1})}{h}=-1\] \[\therefore \]\[LF(0)=RF(0)\] \[\therefore \]The function is differentiable at\[x=0\]. Note: Every differentiable functions are continuous but every continuous functions are not differentiable.


You need to login to perform this action.
You will be redirected in 3 sec spinner