J & K CET Engineering J and K - CET Engineering Solved Paper-2015

  • question_answer
    The number of values of k for which the following system of equations has at least three solutions \[8x+16y\,\,\,+8z=25,\] \[x+y+z=k\]and \[3x+y+3z={{k}^{2}},\] is

    A)  \[0\]     

    B)  \[1\]     

    C)  \[2\]     

    D)  \[3\]

    Correct Answer: C

    Solution :

    Given system of equation is \[8x+16y+8z=25\] \[x+y+z=k\] and \[3x+y+3z={{k}^{2}}\] It can be written as, \[AX=B\] Where, \[A=\left[ \begin{matrix}    8 & 16 & 8  \\    1 & 1 & 1  \\    3 & 1 & 3  \\ \end{matrix} \right],\,\,B=\left[ \begin{matrix}    25  \\    k  \\    {{k}^{2}}  \\ \end{matrix} \right],\,\,\,X=\left[ \begin{matrix}    x  \\    y  \\    z  \\ \end{matrix} \right]\] Cofactors of A are \[{{A}_{11}}={{(-1)}^{1+1}}\left| \begin{matrix}    1 & 1  \\    1 & 3  \\ \end{matrix} \right|={{(-1)}^{2}}(3-1)=2\] \[{{A}_{12}}={{(-1)}^{1+2}}\left| \begin{matrix}    1 & 1  \\    3 & 3  \\ \end{matrix} \right|={{(-1)}^{3}}(3-3)=0\] \[{{A}_{13}}={{(-1)}^{1+3}}\left| \begin{matrix}    1 & 1  \\    3 & 1  \\ \end{matrix} \right|={{(-1)}^{4}}(1-3)=-2\] \[{{A}_{21}}={{(-1)}^{2+1}}\left| \begin{matrix}    16 & 8  \\    1 & 3  \\ \end{matrix} \right|={{(-1)}^{3}}(48-8)=-40\] \[{{A}_{22}}={{(-1)}^{2+2}}\left| \begin{matrix}    8 & 8  \\    3 & 3  \\ \end{matrix} \right|={{(-1)}^{4}}(24-24)=0\] \[{{A}_{23}}={{(-1)}^{2+3}}\left| \begin{matrix}    8 & 16  \\    3 & 1  \\ \end{matrix} \right|={{(-1)}^{5}}(8-48)=40\] \[{{A}_{31}}={{(-1)}^{3+1}}\left| \begin{matrix}    16 & 8  \\    1 & 1  \\ \end{matrix} \right|={{(-1)}^{4}}(16-8)=8\] \[{{A}_{32}}={{(-1)}^{3+2}}\left| \begin{matrix}    8 & 8  \\    1 & 1  \\ \end{matrix} \right|={{(-1)}^{5}}(8-8)=0\] \[{{A}_{33}}={{(-1)}^{3+3}}\left| \begin{matrix}    8 & 16  \\    1 & 1  \\ \end{matrix} \right|={{(-1)}^{6}}(8-16)=-8\] \[\therefore \] \[adj\,(A)={{\left[ \begin{matrix}    {{A}_{11}} & {{A}_{12}} & {{A}_{13}}  \\    {{A}_{21}} & {{A}_{22}} & {{A}_{23}}  \\    {{A}_{31}} & {{A}_{32}} & {{A}_{33}}  \\ \end{matrix} \right]}^{T}}\] \[\Rightarrow \] \[adj\,(A)={{\left[ \begin{matrix}    2 & 0 & -2  \\    -40 & 0 & 40  \\    8 & 0 & -8  \\ \end{matrix} \right]}^{T}}\] \[\Rightarrow \] \[adj\,(A)=\left[ \begin{matrix}    2 & -40 & 8  \\    0 & 0 & 0  \\    -2 & 40 & -8  \\ \end{matrix} \right]\] Now,  \[(adj\,A)\,B=\left[ \begin{matrix}    2 & -40 & 8  \\    0 & 0 & 0  \\    -2 & 40 & -8  \\ \end{matrix} \right]\,\,\left[ \begin{matrix}    25  \\    k  \\    {{k}^{2}}  \\ \end{matrix} \right]\] \[(adj\,\,A)\,\,B=\left[ \begin{matrix}    50-40k+8{{k}^{2}}  \\    0+0+0  \\    -50+40k-8{{k}^{2}}  \\ \end{matrix} \right]\] For atleast three solutions, \[(adj\,A)\,\,B=0\] \[\Rightarrow \] \[\left[ \begin{matrix}    50-40k+8{{k}^{2}}  \\    0  \\    -50+40k-8{{k}^{2}}  \\ \end{matrix} \right]=0\] \[\Rightarrow \] \[\left[ \begin{matrix}    50-40k+8{{k}^{2}}  \\    0  \\    -50+40k-8{{k}^{2}}  \\ \end{matrix} \right]=\left[ \begin{matrix}    0  \\    0  \\    0  \\ \end{matrix} \right]\] \[\Rightarrow \] \[8{{k}^{2}}-40k+50=0\] \[\Rightarrow \] \[2({{k}^{2}}-20k+25)=0\] \[\Rightarrow \] \[k=\frac{-(-20)\pm \sqrt{{{(-20)}^{2}}-4\times 1\times 25}}{2\times 1}\] \[\Rightarrow \] \[k=\frac{20\pm \sqrt{400-100}}{2}\] \[\Rightarrow \] \[k=\frac{20\pm \sqrt{300}}{2}\] \[\Rightarrow \] \[k=\frac{20\pm \sqrt{100\times 3}}{2}\] \[\Rightarrow \] \[k=\frac{20\pm 10\sqrt{3}}{2}\] \[\Rightarrow \] \[k=10\pm 5\sqrt{3}\] \[\Rightarrow \] \[k=10+5\sqrt{3},\,\,10-5\sqrt{3}\] The number of values of \[k=2\]


You need to login to perform this action.
You will be redirected in 3 sec spinner