J & K CET Engineering J and K - CET Engineering Solved Paper-2011

  • question_answer
    \[\int_{-3}^{2}{[f(x)+f(-x)]\,\,.\,\,[g(x)-g(-x)]\,\,dx}\] is equal to

    A)  \[0\]

    B)  \[2\int_{-3}^{3}{f\,(x)dx}\]

    C)  \[2\int_{0}^{3}{f\,(x)\,\,g\,\,(x)\,\,dx}\]

    D)  \[2\int_{0}^{3}{[f(x)-g(x)]\,dx}\]

    Correct Answer: A

    Solution :

    \[\int_{-3}^{3}{[f(x)+f(-x)].[g(x)-g(-x)]\,dx}\] \[\because \] \[\int_{-a}^{a}{f(x)\,\,dx}\] \[=\left\{ \begin{matrix}    2\int_{0}^{a}{f(x)\,dx,\,\,if\,f(-x)=f(x),\,i.e.,\,\,even}  \\    0,\,\,\,if(-x)=-f(x),\,i.e.,\,odd  \\ \end{matrix} \right.\] Let \[h(x)=\{f(x)+f(-x)\}.\,\{g(x)-g(-x)\}\] \[h(-x)=\{f(-x)+f(x)\}.\,\{g\,(-x)-g(x)\}\] \[=-\{f(x)+f(-x)\}.\{g\,(x)-g(-x)\}\] \[h(-x)=-h\,(x),\,\,i.e.,\,\] odd function \[\therefore \]\[\int_{-3}^{3}{[f(x)+f(-x)].[g(x)g(-x)].dx=0}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner