J & K CET Engineering J and K - CET Engineering Solved Paper-2003

  • question_answer
    The magnitude of electric field at distance r from an infinitely thin rod having a linear charge density \[\lambda ,\]is (use Gauss's law)

    A)  \[E=\frac{\lambda }{2\pi {{\varepsilon }_{0}}r}\]

    B)  \[E=\frac{2\lambda }{\pi {{\varepsilon }_{0}}r}\]

    C)  \[E=\frac{2\lambda }{4\pi {{\varepsilon }_{0}}r}\]

    D)  \[E=\frac{4\lambda }{\pi {{\varepsilon }_{0}}r}\]

    Correct Answer: A

    Solution :

    Gauss theorem states that the total electric flux \[(\phi )\]through any closed surface is equal to \[\frac{1}{{{\varepsilon }_{0}}}\]times the 'net' charge q enclosed by the surface. \[{{\phi }_{z}}=\int{{\vec{E}}}.\overrightarrow{dA}=\frac{Q}{{{\varepsilon }_{0}}}\] Taking cylindrical Gaussian surface of radius r, height h curved surface \[=2\pi rh\]. Electric flux through it \[=E\times 2\pi rh\] Charge enclosed \[=\lambda h\] \[\therefore \] From Gauss theorem, Charge = \[={{\varepsilon }_{0}}\times \] (Electric flux) \[\Rightarrow \] \[{{\varepsilon }_{0}}E\times 2\pi rh=\lambda h\] \[\Rightarrow \] \[E=\frac{1}{2\pi {{\varepsilon }_{0}}}.\frac{\lambda }{r}=\frac{\lambda }{2\pi {{\varepsilon }_{0}}r}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner