CET Karnataka Engineering CET - Karnataka Engineering Solved Paper-2004

  • question_answer
    \[\int{\frac{d\,x}{x\,({{x}^{7}}+1)}}\] is equal to :

    A)  \[\log \left( \frac{{{x}^{7}}}{{{x}^{7}}+1} \right)+c\]       

    B)  \[\frac{1}{7}\log \left( \frac{{{x}^{7}}}{{{x}^{7}}+1} \right)+c\]

    C)  \[\log \left( \frac{{{x}^{7}}+1}{{{x}^{7}}} \right)+c\]       

    D)  \[\frac{1}{7}\log \left( \frac{{{x}^{7}}+1}{{{x}^{7}}} \right)+c\]

    Correct Answer: B

    Solution :

    Given that \[I=\int{\frac{d\,x}{x\,({{x}^{7}}+1)}}\] On putting \[{{x}^{7}}=t\] \[\Rightarrow \]               \[7{{x}^{6}}dx=dt\] \[\Rightarrow \]               \[dx=\frac{1}{7{{x}^{6}}}dt\] \[\therefore \]  \[I=\int{\frac{1}{7{{x}^{7}}}\frac{dt}{(t+1)}}\]                 \[=\frac{1}{7}\int{\frac{1}{t}\frac{dt}{(t+1)}}\]                   \[(\because \,\,{{x}^{7}}=t)\]                 \[=\frac{1}{7}\int{\left( \frac{1}{t}-\frac{1}{t+1} \right)\,dt}\]                 \[=\frac{1}{7}\log \,\left( \frac{t}{(t+1)} \right)+c\]                 \[=\frac{1}{7}\log \,\left( \frac{{{x}^{7}}}{{{x}^{7}}+1} \right)+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner