CET Karnataka Engineering CET - Karnataka Engineering Solved Paper-2003

  • question_answer
    \[\int_{0}^{\infty }{\frac{x\,dx}{(1+x)\,(1+{{x}^{2}})}}\] is equal to :

    A)  \[\frac{\pi }{2}\]                                             

    B)  0

    C)  1                                            

    D)  \[\frac{\pi }{4}\]

    Correct Answer: D

    Solution :

    \[\int_{0}^{\infty }{\frac{x\,d\,x}{(1+x)\,(1+{{x}^{2}})}}\] Put         \[x=\tan \theta \] \[\Rightarrow \]               \[\frac{dx}{d\theta }={{\sec }^{2}}\theta \] \[=\int_{0}^{\pi /2}{\frac{\tan \theta {{\sec }^{2}}\theta d\theta }{(1+\tan \theta )\,(1+{{\tan }^{2}}\theta )}}\] [For limit, \[x=0\Rightarrow \theta =0,\,x=\infty \Rightarrow \theta =\pi /2\]] \[=\int_{0}^{\pi /2}{\frac{\tan \theta {{\sec }^{2}}\theta d\theta }{(1+\tan \theta ){{\sec }^{2}}\theta }}\]                                                 \[[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta ]\]                 \[=\int_{0}^{\pi /2}{\frac{\tan \theta }{1+\tan \theta }}\]                 \[=\int_{0}^{\pi /2}{\frac{\frac{\sin \theta }{\cos \theta }}{1+\frac{\sin \theta }{\cos \theta }}d\theta }\]                 \[=\int_{0}^{\pi /2}{\frac{\sin \theta }{\cos \theta +\sin \theta }d\theta }\] Let          \[I=\int_{0}^{\pi /2}{\frac{\sin \theta }{\cos \theta +\sin \theta }d\theta }\]                        ... (1)                 \[I=\int_{0}^{\pi /2}{\frac{\sin \left( \frac{\pi }{2}-\theta  \right)}{\cos (\pi /2-\theta +\sin \left( \frac{\pi }{2}-\theta  \right)}}\]                 \[\left[ \int_{0}^{a}{f(x)\,dx=\int_{0}^{a}{f(a-ax)\,dx}} \right]\]                 \[I=\int_{0}^{\pi /2}{\frac{\cos \theta }{\sin \theta +\cos \theta }}\]                        ?. (2) \[[\sin \,(\pi /2-\theta )=\cos \theta ,\,\cos \left( \frac{\pi }{2}-\theta  \right)=\sin \theta ]\] adding (1) and (2) we get \[2I=\int_{0}^{\pi /2}{\frac{\sin \theta }{\sin \theta +cos\theta }d\theta +}\int_{0}^{\pi /2}{\frac{\cos \theta }{\sin \theta +\cos \theta }d\theta }\]                \[2I=\int_{0}^{\pi /2}{\frac{\sin \theta +\cos \theta }{\sin \theta +\cos \theta }d\theta }\]                 \[2I=\int_{0}^{\pi /2}{d\theta }\]                 \[2I=\left[ \begin{align}   & 0 \\  &  \\ \end{align} \right]_{0}^{\frac{\pi }{2}}\]                 \[2I=\frac{\pi }{2}\]                 \[\Rightarrow \]               \[I=\frac{\pi }{4}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner